|
import streamlit as st |
|
|
|
import torch |
|
import transformers |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
import os |
|
import torch |
|
import torch.nn as nn |
|
import bitsandbytes as bnb |
|
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM |
|
|
|
from datasets import Dataset |
|
import pandas as pd |
|
import transformers |
|
from datasets import load_dataset |
|
from peft import LoraConfig, get_peft_model |
|
|
|
import time |
|
|
|
peft_model_id = "foobar8675/bloom-7b1-lora-tagger" |
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-7b1", return_dict=True, load_in_8bit=True, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-7b1") |
|
|
|
|
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
|
|
text = st.text_area('enter text in this format : β<<report>>β ->: ') |
|
|
|
if text: |
|
|
|
start_time = time.time() |
|
batch = tokenizer(text, return_tensors='pt') |
|
output_tokens = model.generate(**batch, max_new_tokens=25) |
|
|
|
out = tokenizer.decode(output_tokens[0], skip_special_tokens=True) |
|
st.json(out) |
|
st.json(f"Elapsed time: {time.time() - start_time}s") |
|
|