Spaces:
Sleeping
Sleeping
fix image type and float size
Browse files- app.py +2 -2
- image_generator.py +18 -13
app.py
CHANGED
@@ -6,7 +6,7 @@ print(ig)
|
|
6 |
ig.load_models()
|
7 |
ig.load_scheduler()
|
8 |
|
9 |
-
def
|
10 |
|
11 |
print(f"{prompt=} {mix_prompt=} {mix_ratio=} {negative_prompt=} {steps=} {init_image=} ")
|
12 |
generated_image, latents = ig.generate(
|
@@ -26,7 +26,7 @@ def greet(prompt, mix_prompt, mix_ratio, negative_prompt, steps, init_image ):
|
|
26 |
return generated_image, noisy_latent
|
27 |
|
28 |
iface = gr.Interface(
|
29 |
-
fn=
|
30 |
inputs=[
|
31 |
gr.Textbox(value="a cute dog", label="Prompt", info="primary prompt used to generate an image"),
|
32 |
gr.Textbox(value=None, label="Secondary Prompt", info="secondary prompt to mix with the primary embeddings"),
|
|
|
6 |
ig.load_models()
|
7 |
ig.load_scheduler()
|
8 |
|
9 |
+
def call(prompt, mix_prompt, mix_ratio, negative_prompt, steps, init_image ):
|
10 |
|
11 |
print(f"{prompt=} {mix_prompt=} {mix_ratio=} {negative_prompt=} {steps=} {init_image=} ")
|
12 |
generated_image, latents = ig.generate(
|
|
|
26 |
return generated_image, noisy_latent
|
27 |
|
28 |
iface = gr.Interface(
|
29 |
+
fn=call,
|
30 |
inputs=[
|
31 |
gr.Textbox(value="a cute dog", label="Prompt", info="primary prompt used to generate an image"),
|
32 |
gr.Textbox(value=None, label="Secondary Prompt", info="secondary prompt to mix with the primary embeddings"),
|
image_generator.py
CHANGED
@@ -28,16 +28,22 @@ class ImageGenerator():
|
|
28 |
self.height = 512
|
29 |
self.generator = torch.manual_seed(32)
|
30 |
self.bs = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def __repr__(self):
|
33 |
return f"Image Generator with {self.g=}"
|
34 |
|
35 |
def load_models(self):
|
36 |
-
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14",
|
37 |
-
self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14",
|
38 |
-
# vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema", torch_dtype=torch.float16 ).to(
|
39 |
-
self.vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4",
|
40 |
-
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4",
|
41 |
|
42 |
def load_scheduler( self,
|
43 |
beta_start : float=0.00085,
|
@@ -63,7 +69,7 @@ class ImageGenerator():
|
|
63 |
np_images = np.repeat(np_img[np.newaxis, :, :], self.bs, axis=0) # adding a new dimension and repeating the image for each prompt
|
64 |
# print(f"{np_images.shape=}")
|
65 |
|
66 |
-
decoded_latent = torch.from_numpy(np_images).to(
|
67 |
# print(f"{decoded_latent.shape=}")
|
68 |
|
69 |
encoded_latent = 0.18215 * self.vae.encode(decoded_latent).latent_dist.sample()
|
@@ -75,7 +81,7 @@ class ImageGenerator():
|
|
75 |
# noise = torch.randn_like(latent) # missing generator parameter
|
76 |
noise = torch.randn(
|
77 |
size = (self.bs, self.unet.config.in_channels, self.height//8, self.width//8),
|
78 |
-
generator = self.generator).to(
|
79 |
timesteps = torch.tensor([self.scheduler.timesteps[scheduler_steps]])
|
80 |
noisy_latent = self.scheduler.add_noise(latent, noise, timesteps)
|
81 |
# print(f"add_noise: {timesteps.shape=} {timesteps=} {noisy_latent.shape=}")
|
@@ -103,7 +109,7 @@ class ImageGenerator():
|
|
103 |
if maxlen is None: maxlen = self.tokenizer.model_max_length
|
104 |
|
105 |
inp = self.tokenizer([prompt], padding="max_length", max_length=maxlen, truncation=True, return_tensors="pt")
|
106 |
-
return self.text_encoder(inp.input_ids.to(
|
107 |
|
108 |
def tensor_to_pil(self, t:torch.Tensor) -> Image:
|
109 |
'''transforms a tensor decoded by the vae to a pil image'''
|
@@ -126,7 +132,7 @@ class ImageGenerator():
|
|
126 |
seed : int=32,
|
127 |
steps : int=30,
|
128 |
start_step_ratio : float=1/5,
|
129 |
-
init_image :
|
130 |
latent_callback_mod : int=10):
|
131 |
self.latent_images = []
|
132 |
if not negative_prompt: negative_prompt = ""
|
@@ -153,13 +159,12 @@ class ImageGenerator():
|
|
153 |
else:
|
154 |
start_steps = int(steps * start_step_ratio) # 0%: too much noise, 100% no noise
|
155 |
# print(f"{start_steps=}")
|
156 |
-
|
157 |
-
latents =self. pil_to_latent(img)
|
158 |
self.latent_callback(latents)
|
159 |
-
latents = self.add_noise(latents, start_steps).to(
|
160 |
self.latent_callback(latents)
|
161 |
|
162 |
-
latents = latents.to(
|
163 |
|
164 |
for i,ts in enumerate(tqdm(self.scheduler.timesteps, leave=False)):
|
165 |
if i >= start_steps:
|
|
|
28 |
self.height = 512
|
29 |
self.generator = torch.manual_seed(32)
|
30 |
self.bs = 1
|
31 |
+
if torch.cuda.is_available():
|
32 |
+
self.device = torch.device("cuda")
|
33 |
+
self.float_size = torch.float16
|
34 |
+
else:
|
35 |
+
self.device = torch.device("cpu")
|
36 |
+
self.float_size = torch.float32
|
37 |
|
38 |
def __repr__(self):
|
39 |
return f"Image Generator with {self.g=}"
|
40 |
|
41 |
def load_models(self):
|
42 |
+
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=self.float_size)
|
43 |
+
self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=self.float_size).to( self.device)
|
44 |
+
# vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema", torch_dtype=torch.float16 ).to(self.device)
|
45 |
+
self.vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").to( self.device)
|
46 |
+
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet" ).to( self.device) #torch_dtype=torch.float16,
|
47 |
|
48 |
def load_scheduler( self,
|
49 |
beta_start : float=0.00085,
|
|
|
69 |
np_images = np.repeat(np_img[np.newaxis, :, :], self.bs, axis=0) # adding a new dimension and repeating the image for each prompt
|
70 |
# print(f"{np_images.shape=}")
|
71 |
|
72 |
+
decoded_latent = torch.from_numpy(np_images).to(self.device).float() #<-- stability-ai vae uses half(), compvis vae uses float?
|
73 |
# print(f"{decoded_latent.shape=}")
|
74 |
|
75 |
encoded_latent = 0.18215 * self.vae.encode(decoded_latent).latent_dist.sample()
|
|
|
81 |
# noise = torch.randn_like(latent) # missing generator parameter
|
82 |
noise = torch.randn(
|
83 |
size = (self.bs, self.unet.config.in_channels, self.height//8, self.width//8),
|
84 |
+
generator = self.generator).to(self.device)
|
85 |
timesteps = torch.tensor([self.scheduler.timesteps[scheduler_steps]])
|
86 |
noisy_latent = self.scheduler.add_noise(latent, noise, timesteps)
|
87 |
# print(f"add_noise: {timesteps.shape=} {timesteps=} {noisy_latent.shape=}")
|
|
|
109 |
if maxlen is None: maxlen = self.tokenizer.model_max_length
|
110 |
|
111 |
inp = self.tokenizer([prompt], padding="max_length", max_length=maxlen, truncation=True, return_tensors="pt")
|
112 |
+
return self.text_encoder(inp.input_ids.to(self.device))[0].float()
|
113 |
|
114 |
def tensor_to_pil(self, t:torch.Tensor) -> Image:
|
115 |
'''transforms a tensor decoded by the vae to a pil image'''
|
|
|
132 |
seed : int=32,
|
133 |
steps : int=30,
|
134 |
start_step_ratio : float=1/5,
|
135 |
+
init_image : Image=None,
|
136 |
latent_callback_mod : int=10):
|
137 |
self.latent_images = []
|
138 |
if not negative_prompt: negative_prompt = ""
|
|
|
159 |
else:
|
160 |
start_steps = int(steps * start_step_ratio) # 0%: too much noise, 100% no noise
|
161 |
# print(f"{start_steps=}")
|
162 |
+
latents =self. pil_to_latent(init_image)
|
|
|
163 |
self.latent_callback(latents)
|
164 |
+
latents = self.add_noise(latents, start_steps).to(self.device).float()
|
165 |
self.latent_callback(latents)
|
166 |
|
167 |
+
latents = latents.to(self.device).float()
|
168 |
|
169 |
for i,ts in enumerate(tqdm(self.scheduler.timesteps, leave=False)):
|
170 |
if i >= start_steps:
|