Spaces:
Running
Running
Create afm_gradio.py
Browse files- afm_gradio.py +408 -0
afm_gradio.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw
|
3 |
+
|
4 |
+
|
5 |
+
def run_afm_app(task_selector, input_image, mask_image, text_input, text_input_x, text_input_gsam, coord_input,
|
6 |
+
ddim_steps, ddim_steps_pipe, inpaint_input_gsam, text_input_inpaint_pipe, text_input_restyling,
|
7 |
+
blur, sharpen, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint, prompt_background , steps_br,
|
8 |
+
str_res, gs_res, np_res, steps_res, np_inpaint, steps_inpaint, prompt_txt2img, np_txt2img, gs_txt2img,
|
9 |
+
steps_txt2img, steps_super, dilation_bool, dilation_value, steps_inp):
|
10 |
+
|
11 |
+
print(f"Task selected: {task_selector}")
|
12 |
+
|
13 |
+
if task_selector == "SAM":
|
14 |
+
from mask_sam import sam_gradio
|
15 |
+
return sam_gradio(input_image, coord_input, dilation_bool, dilation_value)
|
16 |
+
|
17 |
+
if task_selector == "GroundedSAM":
|
18 |
+
from mask_groundedsam import groundedsam_mask_gradio
|
19 |
+
return groundedsam_mask_gradio(input_image, text_input, dilation_bool, dilation_value)
|
20 |
+
|
21 |
+
if task_selector == "Stable Diffusion with ControlNet Inpainting":
|
22 |
+
from inpaint_sd_controlnet import controlnet_inpaint_gradio
|
23 |
+
return controlnet_inpaint_gradio(input_image, mask_image, text_input_x)
|
24 |
+
|
25 |
+
if task_selector == "Stable Diffusion v1.5 Inpainting":
|
26 |
+
from inpaint_sd import inpaint_sd_gradio
|
27 |
+
return inpaint_sd_gradio(input_image, mask_image, text_input_x, steps_inp)
|
28 |
+
|
29 |
+
if task_selector == "Stable Diffusion XL Inpainting":
|
30 |
+
from inpaint_sdxl import inpaint_sdxl_gradio
|
31 |
+
return inpaint_sdxl_gradio(input_image, mask_image, text_input_x, steps_inp)
|
32 |
+
|
33 |
+
if task_selector == "Kandinsky v2.2 Inpainting":
|
34 |
+
from inpaint_kandinsky import inpaint_kandinsky_gradio
|
35 |
+
return inpaint_kandinsky_gradio(input_image, mask_image, text_input_x, steps_inp)
|
36 |
+
|
37 |
+
if task_selector == "GroundedSAM Inpainting":
|
38 |
+
from inpaint_groundedsam import groundedsam_inpaint_gradio
|
39 |
+
return groundedsam_inpaint_gradio(input_image, text_input_gsam, inpaint_input_gsam)
|
40 |
+
|
41 |
+
if task_selector == "Object Removal LDM":
|
42 |
+
from eraser_ldm import ldm_removal_gradio
|
43 |
+
return ldm_removal_gradio(input_image, mask_image, ddim_steps)
|
44 |
+
|
45 |
+
if task_selector == "Restyling - Stable Diffusion v1.5":
|
46 |
+
from restyling_sd import restyling_gradio
|
47 |
+
return restyling_gradio(input_image, text_input_restyling, str_res, gs_res, np_res, steps_res)
|
48 |
+
|
49 |
+
if task_selector == "Restyling - Stable Diffusion XL":
|
50 |
+
from restyling_sdxl import restyling_sdxl_gradio
|
51 |
+
return restyling_sdxl_gradio(input_image, text_input_restyling, str_res, gs_res, np_res, steps_res)
|
52 |
+
|
53 |
+
if task_selector == "Restyling - Kandinsky v2.2":
|
54 |
+
from restyling_kandinsky import restyling_kandinsky_gradio
|
55 |
+
return restyling_kandinsky_gradio(input_image, text_input_restyling, str_res, gs_res, np_res, steps_res)
|
56 |
+
|
57 |
+
if task_selector == "Superresolution - LDM x4 OpenImages":
|
58 |
+
from superres_ldm import superres_gradio
|
59 |
+
return superres_gradio(input_image, steps_super)
|
60 |
+
|
61 |
+
if task_selector == "Superresolution - Stability AI x4 Upscaler":
|
62 |
+
from superres_upscaler import superres_upscaler_gradio
|
63 |
+
return superres_upscaler_gradio(input_image, steps_super)
|
64 |
+
|
65 |
+
if task_selector == "LDM Removal Pipeline":
|
66 |
+
from eraser_ldm_pipe import ldm_removal_pipe_gradio
|
67 |
+
return ldm_removal_pipe_gradio(input_image, coord_input, ddim_steps_pipe)
|
68 |
+
|
69 |
+
if task_selector in ["Stable Diffusion v1.5 Inpainting Pipeline", "Stable Diffusion XL Inpainting Pipeline", "Kandinsky v2.2 Inpainting Pipeline"]:
|
70 |
+
from inpaint_pipe import inpaint_pipe_gradio
|
71 |
+
return inpaint_pipe_gradio(task_selector, input_image, coord_input, text_input_inpaint_pipe, np_inpaint, steps_inpaint)
|
72 |
+
|
73 |
+
if task_selector == "Stable Diffusion with ControlNet Inpainting Pipeline":
|
74 |
+
from inpaint_sd_controlnet_pipe import inpaint_func_pipe_gradio
|
75 |
+
return inpaint_func_pipe_gradio(input_image, coord_input, text_input_inpaint_pipe, np_inpaint, steps_inpaint)
|
76 |
+
|
77 |
+
if task_selector == "Portrait Mode - Depth Anything":
|
78 |
+
from blur_image import portrait_gradio
|
79 |
+
return portrait_gradio(input_image, blur, sharpen)
|
80 |
+
|
81 |
+
if task_selector == "Outpainting - Stable Diffusion":
|
82 |
+
from outpaint_sd import outpaint_sd_gradio
|
83 |
+
return outpaint_sd_gradio(input_image, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint)
|
84 |
+
|
85 |
+
if task_selector == "Outpainting - Stable Diffusion XL":
|
86 |
+
from outpaint_sdxl import outpaint_sdxl_gradio
|
87 |
+
return outpaint_sdxl_gradio(input_image, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint)
|
88 |
+
|
89 |
+
if task_selector == "Background Replacement - Stable Diffusion":
|
90 |
+
from background_replace_sd import background_replace_sd_gradio
|
91 |
+
return background_replace_sd_gradio(input_image, prompt_background , steps_br)
|
92 |
+
|
93 |
+
if task_selector == "Background Replacement - Stable Diffusion XL":
|
94 |
+
from background_replace_sdxl import background_replace_sdxl_gradio
|
95 |
+
return background_replace_sdxl_gradio(input_image, prompt_background , steps_br)
|
96 |
+
|
97 |
+
if task_selector in ["Stable Diffusion v1.5 Txt2Img", "Stable Diffusion XL Txt2Img", "Kandinsky v2.2 Txt2Img"]:
|
98 |
+
from txt2img_generation import txt2img_gradio
|
99 |
+
return txt2img_gradio(input_image, task_selector, prompt_txt2img, np_txt2img, gs_txt2img, steps_txt2img)
|
100 |
+
|
101 |
+
if task_selector == "Eraser - LaMa":
|
102 |
+
from eraser_lama import eraser_lama_gradio
|
103 |
+
return eraser_lama_gradio(input_image, mask_image)
|
104 |
+
|
105 |
+
selected_points = []
|
106 |
+
|
107 |
+
def input_handler(evt: gr.SelectData, input_image):
|
108 |
+
global selected_points
|
109 |
+
coords = evt.index
|
110 |
+
x, y = coords[0], coords[1]
|
111 |
+
selected_points.append([x, y])
|
112 |
+
coord_string = '; '.join([f"{pt[0]},{pt[1]}" for pt in selected_points])
|
113 |
+
|
114 |
+
image_with_points = input_image.copy()
|
115 |
+
draw = ImageDraw.Draw(image_with_points)
|
116 |
+
for point in selected_points:
|
117 |
+
draw.ellipse((point[0] - 2, point[1] - 2, point[0] + 2, point[1] + 2), fill="red", outline="red")
|
118 |
+
|
119 |
+
return coord_string, image_with_points
|
120 |
+
|
121 |
+
def reset_selected_points(input_image):
|
122 |
+
global selected_points
|
123 |
+
selected_points = []
|
124 |
+
print("Selected points have been reset.")
|
125 |
+
return "", input_image
|
126 |
+
|
127 |
+
def reload_image(original_image_path):
|
128 |
+
original_image = original_image_path
|
129 |
+
return original_image
|
130 |
+
|
131 |
+
def update_task_selector(task_selector, task):
|
132 |
+
return task
|
133 |
+
|
134 |
+
def reload_image_with_output(output_image):
|
135 |
+
return output_image
|
136 |
+
|
137 |
+
def reload_mask(output_image):
|
138 |
+
return output_image
|
139 |
+
|
140 |
+
title = "# AFM Image-Editing App"
|
141 |
+
|
142 |
+
if __name__ == "__main__":
|
143 |
+
block = gr.Blocks(theme='shivi/calm_seafoam')
|
144 |
+
|
145 |
+
with block:
|
146 |
+
gr.Markdown(title)
|
147 |
+
gr.Markdown(
|
148 |
+
"""
|
149 |
+
Welcome to the AFM Image-Editing App!
|
150 |
+
First, upload an input image or generate it via Txt2Img below.
|
151 |
+
Then, choose the desired task by navigating the tabs.
|
152 |
+
Finally, choose the model on the Dropdown within each tab and click on 'Generate'! Enjoy the App!
|
153 |
+
""")
|
154 |
+
|
155 |
+
original_image_path = "inputs/demo/milton.png" # Select input image path here
|
156 |
+
# original_image_path = "outputs/txt2img/generated_input.png" # for txt2img generated input image
|
157 |
+
input_mask_path = "inputs/gradio_masks/jessi_mask.png" # Optional, make sure it matches the input image
|
158 |
+
original_image = Image.open(original_image_path)
|
159 |
+
|
160 |
+
with gr.Row():
|
161 |
+
with gr.Column():
|
162 |
+
input_image = gr.Image(label="Input Image", sources='upload', type="pil", value=original_image_path, interactive=True)
|
163 |
+
with gr.Column():
|
164 |
+
output_image = gr.Image(label="Generated Image", type="pil")
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
generate_button = gr.Button("Generate!")
|
168 |
+
|
169 |
+
with gr.Row():
|
170 |
+
with gr.Column():
|
171 |
+
|
172 |
+
gr.Markdown("Type image coordinates manually or click on the image directly:")
|
173 |
+
coord_input = gr.Textbox(label="Pixel Coordinates (x,y), Format x1,y1; x2,y2 ...", value="")
|
174 |
+
reset_button = gr.Button("Reset coordinates")
|
175 |
+
reload_image_button = gr.Button("Clear Image")
|
176 |
+
reload_output_button = gr.Button("Load Output")
|
177 |
+
task_selector = gr.State(value="")
|
178 |
+
|
179 |
+
with gr.Accordion("Txt2Img Generation (Optional)", open=False):
|
180 |
+
tab_task_selector_11 = gr.Dropdown(["Stable Diffusion v1.5 Txt2Img",
|
181 |
+
"Stable Diffusion XL Txt2Img",
|
182 |
+
"Kandinsky v2.2 Txt2Img"], label="Select Model")
|
183 |
+
gr.Markdown("""
|
184 |
+
### Instructions
|
185 |
+
Use this feature if you wish to generate your own input image.
|
186 |
+
After generation, simply uncomment the original_image_path line on the gradio script and relaunch the app!
|
187 |
+
Required Inputs: Text Prompt, str_res, gs_res, np_res, steps_res
|
188 |
+
Example prompt: "Photorealistic Gotham City night skyline, rain pouring down, dark clouds with streaks of lightning."
|
189 |
+
Example negative prompt: "poor details, poor quality, blurry, deformed, extra limbs"
|
190 |
+
""")
|
191 |
+
prompt_txt2img = gr.Textbox(label="Text Prompt: ", value="Photorealistic Gotham City night skyline, Batman standing on top of skyscraper, close shot, unreal engine, cinematic, rain pouring down, dark clouds with streaks of lightning")
|
192 |
+
np_txt2img = gr.Textbox(label="Negative Prompt", value="poor details, poor quality, blurry, deformed, extra limbs")
|
193 |
+
gs_txt2img = gr.Slider(minimum=0.0, maximum=50.0, label="Guidance Scale", value=7.5)
|
194 |
+
steps_txt2img = gr.Slider(minimum=5, maximum=200, label="Number of inference steps", value=30, step=1)
|
195 |
+
|
196 |
+
with gr.Accordion("Mask Input Tasks (Optional)", open=False):
|
197 |
+
gr.Markdown("""
|
198 |
+
Here is the mask uploaded directly from the gradio script, if you wish to change it,
|
199 |
+
use the Mask Generation Preview Tab and click the 'Load Preview Mask' button.
|
200 |
+
""")
|
201 |
+
mask_image = gr.Image(label="Input Mask (Optional)", sources='upload', type="pil", value=input_mask_path)
|
202 |
+
|
203 |
+
with gr.Tab("Inpainting - Object Replacement"):
|
204 |
+
tab_task_selector_2 = gr.Dropdown(["Stable Diffusion with ControlNet Inpainting",
|
205 |
+
"Stable Diffusion v1.5 Inpainting",
|
206 |
+
"Stable Diffusion XL Inpainting",
|
207 |
+
"Kandinsky v2.2 Inpainting"],
|
208 |
+
label="Select Model")
|
209 |
+
gr.Markdown("""
|
210 |
+
### Instructions
|
211 |
+
All models in this section work with the given uploaded input mask.
|
212 |
+
Required Inputs: Input Mask (Upload) , Text Prompt - Object to replace masked area on given input mask below.
|
213 |
+
Input in the text box below the desired object to be inpainted in place of the mask input below.
|
214 |
+
Example prompt: "astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality"
|
215 |
+
""")
|
216 |
+
text_input_x = gr.Textbox(label="Text Prompt: ", value="astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality")
|
217 |
+
steps_inp = gr.Slider(minimum=5, maximum=200, label="Number of inference steps: ", value=50, step=1)
|
218 |
+
|
219 |
+
with gr.Tab("Object Removal"):
|
220 |
+
tab_task_selector_3 = gr.Dropdown(["Object Removal LDM", "Eraser - LaMa"], label="Select Model")
|
221 |
+
gr.Markdown("""
|
222 |
+
### Instructions
|
223 |
+
- **Object Removal LDM**:
|
224 |
+
Required inputs: Input image, Input Mask (Upload or from Preview), DDIM Steps
|
225 |
+
Given the uploaded mask below, simply adjust the slider below according to the desired number of iterations.
|
226 |
+
- **Eraser - LaMa**:
|
227 |
+
Required inputs: Input image, Input Mask (Upload or from Preview)
|
228 |
+
Please note, due to compability issues with the LaMa model and our gradio app, the output visualiztion will not
|
229 |
+
work in the app, but your output will be saved to: code/outputs/untracked/eraser-lama.
|
230 |
+
""")
|
231 |
+
ddim_steps = gr.Slider(minimum=5, maximum=250, label="Number of DDIM sampling steps for object removal LDM", value=150, step=1)
|
232 |
+
|
233 |
+
with gr.Column():
|
234 |
+
|
235 |
+
with gr.Tab("Mask Generation Preview"):
|
236 |
+
tab_task_selector_1 = gr.Dropdown(["SAM", "GroundedSAM"], label="Select Model")
|
237 |
+
reload_mask_button = gr.Button("Load Preview Mask")
|
238 |
+
gr.Markdown("""
|
239 |
+
### Instructions
|
240 |
+
- **SAM**:
|
241 |
+
Required inputs: Input Image, Pixel Coordinates, (Optional) Dilation
|
242 |
+
Type image coordinates manually or click on the image directly. Finally, simply click on the 'Generate' button.
|
243 |
+
""")
|
244 |
+
dilation_bool = gr.Dropdown(["Yes", "No"], label="Use dilation (recommended for inpainting)")
|
245 |
+
dilation_value = gr.Slider(minimum=0, maximum=50, label="Dilation value (recommended: 10) ", value=10, step = 1)
|
246 |
+
gr.Markdown("""
|
247 |
+
- **GroundedSAM (GroundingDINO + SAM)**:
|
248 |
+
Required Inputs: Text Prompt [object(s) to be detected], (Optional) Dilation
|
249 |
+
Input in the text box below the object(s) in the input image for which the masks are to be generated.
|
250 |
+
""")
|
251 |
+
text_input = gr.Textbox(label="Text Prompt: ", value="dog")
|
252 |
+
|
253 |
+
with gr.Tab("Restyling"):
|
254 |
+
tab_task_selector_4 = gr.Dropdown(["Restyling - Stable Diffusion v1.5",
|
255 |
+
"Restyling - Stable Diffusion XL",
|
256 |
+
"Restyling - Kandinsky v2.2"], label="Select Model")
|
257 |
+
gr.Markdown("""
|
258 |
+
### Instructions
|
259 |
+
Required Inputs: Input Image, Text Prompt, str_res, gs_res, np_res, steps_res
|
260 |
+
Example Text Prompt: "Photorealistic Gotham City night skyline, rain pouring down, dark clouds with streaks of lightning."
|
261 |
+
Example Negative Prompt: "poor details, poor quality, blurry, deformed, extra limbs"
|
262 |
+
""")
|
263 |
+
text_input_restyling = gr.Textbox(label="Text Prompt: ", value="Futuristic night city from Cyberpunk 2077, rainy night, close shot, 35 mm, realism, octane render, 8 k, exploration, cinematic, pixbay, modernist, realistic, unreal engine, hyper detailed, photorealistic, maximum detail, volumetric light, moody cinematic epic concept art, vivid")
|
264 |
+
str_res = gr.Slider(minimum=0.1, maximum=1.0, label="Strength: ", value=0.75, step=0.01)
|
265 |
+
gs_res = gr.Slider(minimum=0.0, maximum=50.0, label="Guidance Scale: ", value=7.5, step=0.1)
|
266 |
+
np_res = gr.Textbox(label="Negative Prompt: ", value="poor details, poor quality, blurry, deformed, extra limbs")
|
267 |
+
steps_res = gr.Slider(minimum=5, maximum=150, label="Number of inference steps: ", value=30, step=1)
|
268 |
+
|
269 |
+
with gr.Tab("Superresolution"):
|
270 |
+
tab_task_selector_5 = gr.Dropdown(["Superresolution - LDM x4 OpenImages",
|
271 |
+
"Superresolution - Stability AI x4 Upscaler"], label="Select Model")
|
272 |
+
gr.Markdown("""
|
273 |
+
### Instructions
|
274 |
+
Required Inputs: Input Image, Number of Inference Steps
|
275 |
+
Select model on the Dropdown menu, number of inference steps, and click the 'Generate' button to get your new image.
|
276 |
+
""")
|
277 |
+
steps_super = gr.Slider(minimum=5, maximum=150, label="Number of inference steps: ", value=30, step=1)
|
278 |
+
|
279 |
+
with gr.Tab("Pipeline: Inpainting - Object Replacement"):
|
280 |
+
tab_task_selector_6 = gr.Dropdown(["GroundedSAM Inpainting",
|
281 |
+
"Stable Diffusion with ControlNet Inpainting Pipeline",
|
282 |
+
"Stable Diffusion v1.5 Inpainting Pipeline",
|
283 |
+
"Stable Diffusion XL Inpainting Pipeline",
|
284 |
+
"Kandinsky v2.2 Inpainting Pipeline"], label="Select Model")
|
285 |
+
gr.Markdown("""
|
286 |
+
- **GroundedSAM Inpainting (GroundingDINO + SAM + Stable Diffusion)**:
|
287 |
+
Required Inputs: Input Image, Detection Prompt , Inpainting Prompt
|
288 |
+
Input in the text box below the object(s) in the input image for which the masks are to be generated.
|
289 |
+
Example detection prompt: "dog"
|
290 |
+
Example inpaint prompt: "white tiger, photorealistic, detailed, high quality"
|
291 |
+
""")
|
292 |
+
text_input_gsam = gr.Textbox(label="Detection Prompt: ", value="dog")
|
293 |
+
inpaint_input_gsam = gr.Textbox(label="Inpainting Prompt: ", value="astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality")
|
294 |
+
gr.Markdown("""
|
295 |
+
- **Kandinsky v2.2 / Stable Diffusion v1.5 / SDXL / SD + ControlNet**:
|
296 |
+
Required Inputs: Input Image, Pixel Coodinates , Inpainting Prompt
|
297 |
+
Input in the text box below the object(s) in the input image for which the masks are to be generated.
|
298 |
+
Example Text Prompt: "white tiger, photorealistic, detailed, high quality"
|
299 |
+
Example Negative Prompt: "poor details, poor quality, blurry, deformed, extra limbs"
|
300 |
+
""")
|
301 |
+
text_input_inpaint_pipe = gr.Textbox(label="Text Prompt: ", value="astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality")
|
302 |
+
np_inpaint = gr.Textbox(label="Negative Prompt: ", value="poor details, poor quality, blurry, deformed, extra limbs")
|
303 |
+
steps_inpaint = gr.Slider(minimum=5, maximum=200, label="Number of inference steps: ", value=150, step=1)
|
304 |
+
|
305 |
+
with gr.Tab("Pipeline - Object Removal"):
|
306 |
+
tab_task_selector_7 = gr.Dropdown(["LDM Removal Pipeline", " "], label="Select Model")
|
307 |
+
gr.Markdown("""
|
308 |
+
### Instructions
|
309 |
+
- **LDM Removal Pipeline**:
|
310 |
+
Required inputs: Input Image, Pixel Coodinates, DDIM Steps
|
311 |
+
If you wish to view the mask before the fnal output, go to the 'Mask Generation Preview' Tab.
|
312 |
+
Type the image coordinates manually in the box under the image or click on the image directly.
|
313 |
+
For a more detailed mask of a specific object or part of it, select multiple points.
|
314 |
+
Finally, choose number of DDIM steps simply click on the 'Generate' button:
|
315 |
+
""")
|
316 |
+
ddim_steps_pipe = gr.Slider(minimum=5, maximum=250, label="Number of DDIM sampling steps for object removal", value=150, step=1)
|
317 |
+
|
318 |
+
with gr.Tab("Background Blurring"):
|
319 |
+
tab_task_selector_8 = gr.Dropdown(["Portrait Mode - Depth Anything"], label='Select Model')
|
320 |
+
gr.Markdown("""
|
321 |
+
### Instructions
|
322 |
+
- **Portrait Mode - Depth Anything**:
|
323 |
+
Required inputs: Input Image, box blur, sharpen
|
324 |
+
Recommended blur values range: 2-25
|
325 |
+
Recommended sharpen values range: 0-5
|
326 |
+
Adjust the required inputs with the siders below:
|
327 |
+
""")
|
328 |
+
blur = gr.Slider(minimum=0, maximum=50, label="Box Blur value", value=5, step=1)
|
329 |
+
sharpen = gr.Slider(minimum=0, maximum=7, label="Sharpen Parameter", value=0, step=1)
|
330 |
+
|
331 |
+
with gr.Tab("Outpainting"):
|
332 |
+
tab_task_selector_9 = gr.Dropdown(["Outpainting - Stable Diffusion", "Outpainting - Stable Diffusion XL"], label='Select Model')
|
333 |
+
gr.Markdown("""
|
334 |
+
### Instructions
|
335 |
+
- **Outpainting - Stable Diffusion**:
|
336 |
+
Required inputs: Input Image, Text Prompt, extend left/right/up/down, steps
|
337 |
+
Choose how much and which direction you want to extend /outpaint your image and specify a text prompt.
|
338 |
+
Example prompt: "open plan, kitchen and living room, black umbrella on the floor, modular furniture with cotton textiles, wooden floor, high ceiling, large steel windows viewing a city"
|
339 |
+
""")
|
340 |
+
prompt_outpaint = gr.Textbox(label="Text Prompt: ", value="open plan, kitchen and living room, black umbrella on the floor, modular furniture with cotton textiles, wooden floor, high ceiling, large steel windows viewing a city")
|
341 |
+
e_l = gr.Slider(minimum=0, maximum=1000, label="Extend Left", value=200, step=1)
|
342 |
+
e_r = gr.Slider(minimum=0, maximum=1000, label="Extend Right", value=200, step=1)
|
343 |
+
e_u = gr.Slider(minimum=0, maximum=1000, label="Extend Up", value=200, step=1)
|
344 |
+
e_d = gr.Slider(minimum=0, maximum=1000, label="Extend Down", value=200, step=1)
|
345 |
+
steps_outpaint = gr.Slider(minimum=0, maximum=200, label="Number of Steps", value=50, step=1)
|
346 |
+
|
347 |
+
with gr.Tab("Background Replacement"):
|
348 |
+
tab_task_selector_10 = gr.Dropdown(["Background Replacement - Stable Diffusion", "Background Replacement - Stable Diffusion XL"], label='Select Model')
|
349 |
+
gr.Markdown("""
|
350 |
+
### Instructions
|
351 |
+
- **Background Replacement - Stable Diffusion**:
|
352 |
+
Required inputs: Input Image, Text Prompt, steps
|
353 |
+
Specify the new background in the text box below.
|
354 |
+
Example prompt: "dog sitting on the beach, sunny day, blue sky"
|
355 |
+
""")
|
356 |
+
prompt_background = gr.Textbox(label="Text Prompt: ", value="dog sitting on the beach, sunny day, blue sky, cinematic, pixbay, modernist, realistic, unreal engine, hyper detailed, photorealistic, maximum detail, volumetric light, moody cinematic epic concept art, vivid")
|
357 |
+
steps_br = gr.Slider(minimum=0, maximum=200, label="Number of Steps", value=30, step=1)
|
358 |
+
|
359 |
+
|
360 |
+
|
361 |
+
input_image.select(input_handler, inputs=[input_image], outputs=[coord_input, input_image])
|
362 |
+
|
363 |
+
generate_button.click(
|
364 |
+
fn=run_afm_app,
|
365 |
+
inputs=[task_selector, input_image, mask_image, text_input, text_input_x, text_input_gsam, coord_input, ddim_steps, ddim_steps_pipe,
|
366 |
+
inpaint_input_gsam, text_input_inpaint_pipe, text_input_restyling, blur, sharpen, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint,
|
367 |
+
prompt_background, steps_br, str_res, gs_res, np_res, steps_res, np_inpaint, steps_inpaint, prompt_txt2img, np_txt2img, gs_txt2img,
|
368 |
+
steps_txt2img, steps_super, dilation_bool, dilation_value, steps_inp],
|
369 |
+
outputs=output_image
|
370 |
+
)
|
371 |
+
|
372 |
+
reset_button.click(
|
373 |
+
fn=reset_selected_points,
|
374 |
+
inputs=[input_image],
|
375 |
+
outputs=[coord_input, input_image]
|
376 |
+
)
|
377 |
+
|
378 |
+
reload_image_button.click(
|
379 |
+
fn=reload_image,
|
380 |
+
inputs=[gr.State(original_image_path)],
|
381 |
+
outputs=[input_image]
|
382 |
+
)
|
383 |
+
|
384 |
+
reload_output_button.click(
|
385 |
+
fn=reload_image_with_output,
|
386 |
+
inputs=[output_image],
|
387 |
+
outputs=[input_image]
|
388 |
+
)
|
389 |
+
|
390 |
+
reload_mask_button.click(
|
391 |
+
fn=reload_mask,
|
392 |
+
inputs=[output_image],
|
393 |
+
outputs=[mask_image]
|
394 |
+
)
|
395 |
+
|
396 |
+
tab_task_selector_1.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_1], outputs=[task_selector])
|
397 |
+
tab_task_selector_2.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_2], outputs=[task_selector])
|
398 |
+
tab_task_selector_3.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_3], outputs=[task_selector])
|
399 |
+
tab_task_selector_4.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_4], outputs=[task_selector])
|
400 |
+
tab_task_selector_5.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_5], outputs=[task_selector])
|
401 |
+
tab_task_selector_6.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_6], outputs=[task_selector])
|
402 |
+
tab_task_selector_7.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_7], outputs=[task_selector])
|
403 |
+
tab_task_selector_8.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_8], outputs=[task_selector])
|
404 |
+
tab_task_selector_9.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_9], outputs=[task_selector])
|
405 |
+
tab_task_selector_10.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_10], outputs=[task_selector])
|
406 |
+
tab_task_selector_11.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_11], outputs=[task_selector])
|
407 |
+
|
408 |
+
block.launch(share=True)
|