gradio-demo / app.py
matsunori39's picture
add app
4df84ca
raw
history blame
881 Bytes
import requests
import gradio as gr
import torch
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transformers import create_transform
IMAGENET_1k_URL = "https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt"
LABELS = requests.get(IMAGENET_1k_URL).text.strip().split('\n')
model = create_model('resnet50', pretrained=True)
transform = create_transform(
**resolve_data_config({}, model=model)
)
model.eval()
def predict_fn(img):
img = img.convert('RGB')
img = transform(img).unsqueeze(0)
with torch.no_grad():
out = model(img)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
values, indices = torch.topk(probabilities, k=5)
return {LABELS[i]: v.item() for i, v in zip(indices, values)}
gr.Interface(predict_fn, gr.inputs.Image(type='pli'), outputs='label').launch()