Spaces:
Sleeping
Sleeping
fix
Browse files- main.py +119 -0
- requirement.txt → requirements.txt +0 -0
main.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
model1 = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
7 |
+
feature_extractor1 = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
8 |
+
tokenizer1 = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
9 |
+
|
10 |
+
device1 = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model1.to(device1)
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
max_length = 16
|
16 |
+
num_beams = 4
|
17 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
18 |
+
|
19 |
+
def image_to_text_model_1(image_url):
|
20 |
+
raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
|
21 |
+
|
22 |
+
pixel_values = feature_extractor1(images=[raw_image], return_tensors="pt").pixel_values
|
23 |
+
pixel_values = pixel_values.to(device1)
|
24 |
+
|
25 |
+
output_ids = model1.generate(pixel_values, **gen_kwargs)
|
26 |
+
|
27 |
+
preds = tokenizer1.batch_decode(output_ids, skip_special_tokens=True)
|
28 |
+
preds = [pred.strip() for pred in preds]
|
29 |
+
return preds
|
30 |
+
|
31 |
+
def bytes_to_text_model_1(bts):
|
32 |
+
pixel_values = feature_extractor1(images=[bts], return_tensors="pt").pixel_values
|
33 |
+
pixel_values = pixel_values.to(device1)
|
34 |
+
|
35 |
+
output_ids = model1.generate(pixel_values, **gen_kwargs)
|
36 |
+
|
37 |
+
preds = tokenizer1.batch_decode(output_ids, skip_special_tokens=True)
|
38 |
+
preds = [pred.strip() for pred in preds]
|
39 |
+
print(preds[0])
|
40 |
+
|
41 |
+
|
42 |
+
import requests
|
43 |
+
from PIL import Image
|
44 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
45 |
+
import torch
|
46 |
+
|
47 |
+
device2 = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
48 |
+
processor2 = BlipProcessor.from_pretrained("noamrot/FuseCap")
|
49 |
+
model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap").to(device2)
|
50 |
+
|
51 |
+
|
52 |
+
def image_to_text_model_2(img_url):
|
53 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
54 |
+
text = "a picture of "
|
55 |
+
inputs = processor2(raw_image, text, return_tensors="pt").to(device2)
|
56 |
+
|
57 |
+
out = model2.generate(**inputs, num_beams = 3)
|
58 |
+
print(processor2.decode(out[0], skip_special_tokens=True))
|
59 |
+
|
60 |
+
def bytes_to_text_model_2(byts):
|
61 |
+
text = "a picture of "
|
62 |
+
inputs = processor2(byts, text, return_tensors="pt").to(device2)
|
63 |
+
|
64 |
+
out = model2.generate(**inputs, num_beams = 3)
|
65 |
+
print(processor2.decode(out[0], skip_special_tokens=True))
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
import requests
|
70 |
+
from PIL import Image
|
71 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
72 |
+
|
73 |
+
processor3 = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
74 |
+
model3 = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
75 |
+
|
76 |
+
def image_to_text_model_3(img_url):
|
77 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
78 |
+
text = "a picture of"
|
79 |
+
inputs = processor3(raw_image, text, return_tensors="pt")
|
80 |
+
inputs = processor3(raw_image, return_tensors="pt")
|
81 |
+
|
82 |
+
out = model3.generate(**inputs)
|
83 |
+
print(processor3.decode(out[0], skip_special_tokens=True))
|
84 |
+
|
85 |
+
def bytes_to_text_model_3(byts):
|
86 |
+
text = "a picture of"
|
87 |
+
inputs = processor3(byts, text, return_tensors="pt")
|
88 |
+
inputs = processor3(byts, return_tensors="pt")
|
89 |
+
|
90 |
+
out = model3.generate(**inputs)
|
91 |
+
print(processor3.decode(out[0], skip_special_tokens=True))
|
92 |
+
|
93 |
+
|
94 |
+
import cv2
|
95 |
+
|
96 |
+
def FrameCapture(path):
|
97 |
+
vidObj = cv2.VideoCapture(path)
|
98 |
+
count = 0
|
99 |
+
success = 1
|
100 |
+
|
101 |
+
while success:
|
102 |
+
success, image = vidObj.read()
|
103 |
+
|
104 |
+
if count % 20 == 0:
|
105 |
+
|
106 |
+
print("NEW FRAME")
|
107 |
+
print("MODEL 1")
|
108 |
+
bytes_to_text_model_1(image)
|
109 |
+
print("MODEL 2")
|
110 |
+
bytes_to_text_model_2(image)
|
111 |
+
print("MODEL 3")
|
112 |
+
bytes_to_text_model_3(image)
|
113 |
+
|
114 |
+
print("\n\n")
|
115 |
+
|
116 |
+
count += 1
|
117 |
+
|
118 |
+
|
119 |
+
FrameCapture("animation.mp4")
|
requirement.txt → requirements.txt
RENAMED
File without changes
|