|
from transformers import pipeline
|
|
import gradio as gr
|
|
|
|
model_path="matiss/Latvian-Twitter-Sentiment-Analysis"
|
|
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
|
|
|
|
def classify(text):
|
|
output = sentiment_task(text)
|
|
return output[0]['label'], output[0]['score']
|
|
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
with gr.Row():
|
|
with gr.Column():
|
|
textbox = gr.Textbox(label="Input text:", placeholder="Man garšo pankūkas ar kotletēm", lines=5)
|
|
greet_btn = gr.Button("Classify")
|
|
with gr.Column():
|
|
outbox = gr.Textbox(label="Prediction:", placeholder="positive")
|
|
runbox = gr.Textbox(label="Score")
|
|
|
|
greet_btn.click(
|
|
fn=classify,
|
|
inputs=textbox,
|
|
outputs=[outbox, runbox]
|
|
)
|
|
examples = gr.Examples(
|
|
examples=[
|
|
["Lietus šodien līst kā pa Jāņiem."],
|
|
["Es neciešu pirmdienas"],
|
|
["Pusdienās Tev jāēd brokolis, steiks, biezpiensieriņš un jāuzdzer Dlight."],
|
|
["Nesaprotu vairs kas te tagad notiek"],
|
|
["Man garšo pankūkas ar kotletēm"],
|
|
],
|
|
inputs=[textbox],
|
|
)
|
|
|
|
|
|
demo.launch() |