update app
Browse files- app.py +6 -310
- utils/plotting.py +77 -0
- utils/segmentation.py +259 -0
- utils/utils.py +0 -103
app.py
CHANGED
|
@@ -1,307 +1,5 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
import gradio as gr
|
| 3 |
-
import
|
| 4 |
-
import matplotlib.pyplot as plt
|
| 5 |
-
from PIL import Image
|
| 6 |
-
from io import BytesIO
|
| 7 |
-
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
| 8 |
-
|
| 9 |
-
from models.HybridGNet2IGSC import Hybrid
|
| 10 |
-
from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart
|
| 11 |
-
import scipy.sparse as sp
|
| 12 |
-
import torch
|
| 13 |
-
import pandas as pd
|
| 14 |
-
from zipfile import ZipFile
|
| 15 |
-
|
| 16 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 17 |
-
hybrid = None
|
| 18 |
-
|
| 19 |
-
def getDenseMask(landmarks, h, w):
|
| 20 |
-
|
| 21 |
-
RL = landmarks[0:44]
|
| 22 |
-
LL = landmarks[44:94]
|
| 23 |
-
H = landmarks[94:]
|
| 24 |
-
|
| 25 |
-
img = np.zeros([h, w], dtype = 'uint8')
|
| 26 |
-
|
| 27 |
-
RL = RL.reshape(-1, 1, 2).astype('int')
|
| 28 |
-
LL = LL.reshape(-1, 1, 2).astype('int')
|
| 29 |
-
H = H.reshape(-1, 1, 2).astype('int')
|
| 30 |
-
|
| 31 |
-
img = cv2.drawContours(img, [RL], -1, 1, -1)
|
| 32 |
-
img = cv2.drawContours(img, [LL], -1, 1, -1)
|
| 33 |
-
img = cv2.drawContours(img, [H], -1, 2, -1)
|
| 34 |
-
|
| 35 |
-
return img
|
| 36 |
-
|
| 37 |
-
def getMasks(landmarks, h, w):
|
| 38 |
-
|
| 39 |
-
RL = landmarks[0:44]
|
| 40 |
-
LL = landmarks[44:94]
|
| 41 |
-
H = landmarks[94:]
|
| 42 |
-
|
| 43 |
-
RL = RL.reshape(-1, 1, 2).astype('int')
|
| 44 |
-
LL = LL.reshape(-1, 1, 2).astype('int')
|
| 45 |
-
H = H.reshape(-1, 1, 2).astype('int')
|
| 46 |
-
|
| 47 |
-
RL_mask = np.zeros([h, w], dtype = 'uint8')
|
| 48 |
-
LL_mask = np.zeros([h, w], dtype = 'uint8')
|
| 49 |
-
H_mask = np.zeros([h, w], dtype = 'uint8')
|
| 50 |
-
|
| 51 |
-
RL_mask = cv2.drawContours(RL_mask, [RL], -1, 255, -1)
|
| 52 |
-
LL_mask = cv2.drawContours(LL_mask, [LL], -1, 255, -1)
|
| 53 |
-
H_mask = cv2.drawContours(H_mask, [H], -1, 255, -1)
|
| 54 |
-
|
| 55 |
-
return RL_mask, LL_mask, H_mask
|
| 56 |
-
|
| 57 |
-
def drawOnTop(img, landmarks, original_shape):
|
| 58 |
-
h, w = original_shape
|
| 59 |
-
output = getDenseMask(landmarks, h, w)
|
| 60 |
-
|
| 61 |
-
image = np.zeros([h, w, 3])
|
| 62 |
-
image[:,:,0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float')
|
| 63 |
-
image[:,:,1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float')
|
| 64 |
-
image[:,:,2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float')
|
| 65 |
-
|
| 66 |
-
image = np.clip(image, 0, 1)
|
| 67 |
-
|
| 68 |
-
RL, LL, H = landmarks[0:44], landmarks[44:94], landmarks[94:]
|
| 69 |
-
|
| 70 |
-
# Draw the landmarks as dots
|
| 71 |
-
|
| 72 |
-
for l in RL:
|
| 73 |
-
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
|
| 74 |
-
for l in LL:
|
| 75 |
-
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
|
| 76 |
-
for l in H:
|
| 77 |
-
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 1, 0), -1)
|
| 78 |
-
|
| 79 |
-
return image
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def loadModel(device):
|
| 83 |
-
A, AD, D, U = genMatrixesLungsHeart()
|
| 84 |
-
N1 = A.shape[0]
|
| 85 |
-
N2 = AD.shape[0]
|
| 86 |
-
|
| 87 |
-
A = sp.csc_matrix(A).tocoo()
|
| 88 |
-
AD = sp.csc_matrix(AD).tocoo()
|
| 89 |
-
D = sp.csc_matrix(D).tocoo()
|
| 90 |
-
U = sp.csc_matrix(U).tocoo()
|
| 91 |
-
|
| 92 |
-
D_ = [D.copy()]
|
| 93 |
-
U_ = [U.copy()]
|
| 94 |
-
A_ = [A.copy(), A.copy(), A.copy(), AD.copy(), AD.copy(), AD.copy()]
|
| 95 |
-
|
| 96 |
-
config = {}
|
| 97 |
-
config['n_nodes'] = [N1, N1, N1, N2, N2, N2]
|
| 98 |
-
|
| 99 |
-
A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_, D_, U_))
|
| 100 |
-
|
| 101 |
-
config['latents'] = 64
|
| 102 |
-
config['inputsize'] = 1024
|
| 103 |
-
|
| 104 |
-
f = 32
|
| 105 |
-
config['filters'] = [2, f, f, f, f//2, f//2, f//2]
|
| 106 |
-
config['skip_features'] = f
|
| 107 |
-
config['eval_sampling'] = True
|
| 108 |
-
|
| 109 |
-
hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device)
|
| 110 |
-
hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=torch.device(device)))
|
| 111 |
-
hybrid.eval()
|
| 112 |
-
|
| 113 |
-
return hybrid
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
def pad_to_square(img):
|
| 117 |
-
h, w = img.shape[:2]
|
| 118 |
-
|
| 119 |
-
if h > w:
|
| 120 |
-
padw = (h - w)
|
| 121 |
-
auxw = padw % 2
|
| 122 |
-
img = np.pad(img, ((0, 0), (padw//2, padw//2 + auxw)), 'constant')
|
| 123 |
-
|
| 124 |
-
padh = 0
|
| 125 |
-
auxh = 0
|
| 126 |
-
|
| 127 |
-
else:
|
| 128 |
-
padh = (w - h)
|
| 129 |
-
auxh = padh % 2
|
| 130 |
-
img = np.pad(img, ((padh//2, padh//2 + auxh), (0, 0)), 'constant')
|
| 131 |
-
|
| 132 |
-
padw = 0
|
| 133 |
-
auxw = 0
|
| 134 |
-
|
| 135 |
-
return img, (padh, padw, auxh, auxw)
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
def preprocess(input_img):
|
| 139 |
-
img, padding = pad_to_square(input_img)
|
| 140 |
-
|
| 141 |
-
h, w = img.shape[:2]
|
| 142 |
-
if h != 1024 or w != 1024:
|
| 143 |
-
img = cv2.resize(img, (1024, 1024), interpolation = cv2.INTER_CUBIC)
|
| 144 |
-
|
| 145 |
-
return img, (h, w, padding)
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
def removePreprocess(output, info):
|
| 149 |
-
"""
|
| 150 |
-
output: np.array of shape (n_samples, N_landmarks, 2)
|
| 151 |
-
info: (h, w, padding)
|
| 152 |
-
"""
|
| 153 |
-
h, w, padding = info
|
| 154 |
-
padh, padw, auxh, auxw = padding
|
| 155 |
-
|
| 156 |
-
# Scale
|
| 157 |
-
if h != 1024 or w != 1024:
|
| 158 |
-
output = output * h
|
| 159 |
-
else:
|
| 160 |
-
output = output * 1024
|
| 161 |
-
|
| 162 |
-
# Subtract padding
|
| 163 |
-
output[:, :, 0] = output[:, :, 0] - padw//2
|
| 164 |
-
output[:, :, 1] = output[:, :, 1] - padh//2
|
| 165 |
-
|
| 166 |
-
return output
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
def zip_files(files):
|
| 170 |
-
with ZipFile("complete_results.zip", "w") as zipObj:
|
| 171 |
-
for idx, file in enumerate(files):
|
| 172 |
-
zipObj.write(file, arcname=file.split("/")[-1])
|
| 173 |
-
return "complete_results.zip"
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
def plot_landmarks_with_uncertainty(img, landmarks, uncertainty, figsize=(6,6)):
|
| 177 |
-
# Get dense mask as in drawOnTop
|
| 178 |
-
h, w = img.shape[:2]
|
| 179 |
-
dense_mask = getDenseMask(landmarks, h, w)
|
| 180 |
-
|
| 181 |
-
# Start with image overlay
|
| 182 |
-
overlay = np.zeros([h, w, 3])
|
| 183 |
-
overlay[:,:,0] = img + 0.3 * (dense_mask == 1).astype('float') - 0.1 * (dense_mask == 2).astype('float')
|
| 184 |
-
overlay[:,:,1] = img + 0.3 * (dense_mask == 2).astype('float') - 0.1 * (dense_mask == 1).astype('float')
|
| 185 |
-
overlay[:,:,2] = img - 0.1 * (dense_mask == 1).astype('float') - 0.2 * (dense_mask == 2).astype('float')
|
| 186 |
-
overlay = np.clip(overlay, 0, 1)
|
| 187 |
-
|
| 188 |
-
# Plot
|
| 189 |
-
fig, ax = plt.subplots(figsize=figsize)
|
| 190 |
-
ax.imshow(overlay)
|
| 191 |
-
|
| 192 |
-
# Scatter landmarks colored by uncertainty
|
| 193 |
-
scatter = ax.scatter(
|
| 194 |
-
landmarks[:,0], landmarks[:,1],
|
| 195 |
-
c=uncertainty, cmap='hot',
|
| 196 |
-
s=50, vmin=0, vmax=np.max(uncertainty)
|
| 197 |
-
)
|
| 198 |
-
|
| 199 |
-
# Colorbar
|
| 200 |
-
divider = make_axes_locatable(ax)
|
| 201 |
-
cax = divider.append_axes("right", size="5%", pad=0.05)
|
| 202 |
-
plt.colorbar(scatter, cax=cax, label='Node uncertainty')
|
| 203 |
-
|
| 204 |
-
ax.set_xlim(0, img.shape[1])
|
| 205 |
-
ax.set_ylim(img.shape[0], 0)
|
| 206 |
-
ax.axis('off')
|
| 207 |
-
fig.tight_layout()
|
| 208 |
-
return fig
|
| 209 |
-
|
| 210 |
-
def segment(input_img, noise_std=0.0):
|
| 211 |
-
global hybrid, device
|
| 212 |
-
|
| 213 |
-
if hybrid is None:
|
| 214 |
-
hybrid = loadModel(device)
|
| 215 |
-
|
| 216 |
-
# ------------------ HANDLE SKETCH / INPAINT ------------------
|
| 217 |
-
if isinstance(input_img, dict):
|
| 218 |
-
original = input_img["image"].astype(np.float32)/255.0
|
| 219 |
-
mask = input_img["mask"]
|
| 220 |
-
if mask.ndim == 3:
|
| 221 |
-
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
|
| 222 |
-
mask = mask.astype(np.float32)/255.0
|
| 223 |
-
mask = 1.0 - mask # black strokes
|
| 224 |
-
input_img = np.minimum(original, mask)
|
| 225 |
-
else:
|
| 226 |
-
input_img = input_img.astype(np.float32)/255.0
|
| 227 |
-
|
| 228 |
-
# ------------------ ADD GAUSSIAN NOISE ------------------
|
| 229 |
-
if noise_std > 0:
|
| 230 |
-
noise = np.random.normal(0, noise_std, input_img.shape)
|
| 231 |
-
input_img = np.clip(input_img + noise, 0.0, 1.0)
|
| 232 |
-
|
| 233 |
-
# ------------------ PREPROCESS & PREDICT ------------------
|
| 234 |
-
original_shape = input_img.shape[:2]
|
| 235 |
-
img, (h, w, padding) = preprocess(input_img)
|
| 236 |
-
data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float()
|
| 237 |
-
n_samples = 100
|
| 238 |
-
|
| 239 |
-
with torch.no_grad():
|
| 240 |
-
mu, log_var, conv6, conv5 = hybrid.encode(data)
|
| 241 |
-
latent_var = np.exp(log_var.cpu().numpy())
|
| 242 |
-
|
| 243 |
-
# Sample N latent vectors to decode
|
| 244 |
-
zs = [hybrid.sampling(mu, log_var) for _ in range(n_samples)]
|
| 245 |
-
z_exp = torch.stack(zs, dim=0)
|
| 246 |
-
|
| 247 |
-
# Expand skip connections to match batch size
|
| 248 |
-
conv6_exp = conv6.repeat(n_samples, 1, 1, 1)
|
| 249 |
-
conv5_exp = conv5.repeat(n_samples, 1, 1, 1)
|
| 250 |
-
|
| 251 |
-
# Decode in batch
|
| 252 |
-
output, _, _ = hybrid.decode(z_exp, conv6_exp, conv5_exp)
|
| 253 |
-
output = output.cpu().numpy().reshape(n_samples, -1, 2)
|
| 254 |
-
output = removePreprocess(output, (h, w, padding)).astype('int')
|
| 255 |
-
|
| 256 |
-
# Compute mean and std per node
|
| 257 |
-
means = np.mean(output, axis=0)
|
| 258 |
-
stds = np.std(output, axis=0)
|
| 259 |
-
|
| 260 |
-
# ------------------ SAVE LANDMARKS & MASKS ------------------
|
| 261 |
-
RL = means[0:44]
|
| 262 |
-
LL = means[44:94]
|
| 263 |
-
H = means[94:]
|
| 264 |
-
|
| 265 |
-
np.savetxt("tmp/RL_landmarks.txt", RL, delimiter=" ", fmt="%d")
|
| 266 |
-
np.savetxt("tmp/LL_landmarks.txt", LL, delimiter=" ", fmt="%d")
|
| 267 |
-
np.savetxt("tmp/H_landmarks.txt", H, delimiter=" ", fmt="%d")
|
| 268 |
-
|
| 269 |
-
RL_mask, LL_mask, H_mask = getMasks(means, original_shape[0], original_shape[1])
|
| 270 |
-
cv2.imwrite("tmp/RL_mask.png", RL_mask)
|
| 271 |
-
cv2.imwrite("tmp/LL_mask.png", LL_mask)
|
| 272 |
-
cv2.imwrite("tmp/H_mask.png", H_mask)
|
| 273 |
-
|
| 274 |
-
RL_std = stds[0:44]
|
| 275 |
-
LL_std = stds[44:94]
|
| 276 |
-
H_std = stds[94:]
|
| 277 |
-
|
| 278 |
-
# Save as text files
|
| 279 |
-
np.savetxt("tmp/RL_std.txt", RL_std, delimiter=" ", fmt="%.4f")
|
| 280 |
-
np.savetxt("tmp/LL_std.txt", LL_std, delimiter=" ", fmt="%.4f")
|
| 281 |
-
np.savetxt("tmp/H_std.txt", H_std, delimiter=" ", fmt="%.4f")
|
| 282 |
-
|
| 283 |
-
zipf = zip_files([
|
| 284 |
-
"tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt",
|
| 285 |
-
"tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png",
|
| 286 |
-
"tmp/RL_std.txt", "tmp/LL_std.txt", "tmp/H_std.txt"
|
| 287 |
-
])
|
| 288 |
-
|
| 289 |
-
# ------------------ RANDOM UNCERTAINTY ------------------
|
| 290 |
-
node_uncertainty = np.mean(stds, axis=1)
|
| 291 |
-
fig = plot_landmarks_with_uncertainty(input_img, means, node_uncertainty)
|
| 292 |
-
|
| 293 |
-
output_path = "tmp/segmentation_with_uncertainty.png"
|
| 294 |
-
fig.savefig(output_path, format="png", dpi=150)
|
| 295 |
-
plt.close(fig)
|
| 296 |
-
|
| 297 |
-
return output_path, [
|
| 298 |
-
"tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt",
|
| 299 |
-
"tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png",
|
| 300 |
-
"tmp/RL_std.txt", "tmp/LL_std.txt", "tmp/H_std.txt",
|
| 301 |
-
zipf
|
| 302 |
-
]
|
| 303 |
-
|
| 304 |
-
|
| 305 |
|
| 306 |
# ------------------------- GRADIO -------------------------
|
| 307 |
if __name__ == "__main__":
|
|
@@ -310,19 +8,18 @@ if __name__ == "__main__":
|
|
| 310 |
|
| 311 |
with gr.Tab("Segment Image"):
|
| 312 |
with gr.Row():
|
| 313 |
-
with gr.Column():
|
| 314 |
image_input = gr.Image(
|
| 315 |
type="numpy",
|
| 316 |
tool="sketch",
|
| 317 |
image_mode="L",
|
| 318 |
-
height=
|
| 319 |
-
shape=(512, 512)
|
| 320 |
)
|
| 321 |
|
| 322 |
noise_slider = gr.Slider(
|
| 323 |
label="Gaussian Noise Std Dev",
|
| 324 |
minimum=0.0,
|
| 325 |
-
maximum=0.25,
|
| 326 |
step=0.01,
|
| 327 |
value=0.0
|
| 328 |
)
|
|
@@ -336,9 +33,8 @@ if __name__ == "__main__":
|
|
| 336 |
'utils/example3.png','utils/example4.jpg'
|
| 337 |
])
|
| 338 |
|
| 339 |
-
with gr.Column():
|
| 340 |
-
|
| 341 |
-
image_output = gr.Image(type="filepath", height=512)
|
| 342 |
results = gr.File()
|
| 343 |
|
| 344 |
gr.Markdown("""
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from utils.segmentation import segment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
# ------------------------- GRADIO -------------------------
|
| 5 |
if __name__ == "__main__":
|
|
|
|
| 8 |
|
| 9 |
with gr.Tab("Segment Image"):
|
| 10 |
with gr.Row():
|
| 11 |
+
with gr.Column(scale=1):
|
| 12 |
image_input = gr.Image(
|
| 13 |
type="numpy",
|
| 14 |
tool="sketch",
|
| 15 |
image_mode="L",
|
| 16 |
+
height=450,
|
|
|
|
| 17 |
)
|
| 18 |
|
| 19 |
noise_slider = gr.Slider(
|
| 20 |
label="Gaussian Noise Std Dev",
|
| 21 |
minimum=0.0,
|
| 22 |
+
maximum=0.25,
|
| 23 |
step=0.01,
|
| 24 |
value=0.0
|
| 25 |
)
|
|
|
|
| 33 |
'utils/example3.png','utils/example4.jpg'
|
| 34 |
])
|
| 35 |
|
| 36 |
+
with gr.Column(scale=2):
|
| 37 |
+
image_output = gr.Image(type="filepath", height=450)
|
|
|
|
| 38 |
results = gr.File()
|
| 39 |
|
| 40 |
gr.Markdown("""
|
utils/plotting.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
| 5 |
+
|
| 6 |
+
def getDenseMask(landmarks, h, w):
|
| 7 |
+
RL, LL, H = landmarks[:44], landmarks[44:94], landmarks[94:]
|
| 8 |
+
img = np.zeros([h, w], dtype='uint8')
|
| 9 |
+
RL = RL.reshape(-1, 1, 2).astype('int')
|
| 10 |
+
LL = LL.reshape(-1, 1, 2).astype('int')
|
| 11 |
+
H = H.reshape(-1, 1, 2).astype('int')
|
| 12 |
+
img = cv2.drawContours(img, [RL], -1, 1, -1)
|
| 13 |
+
img = cv2.drawContours(img, [LL], -1, 1, -1)
|
| 14 |
+
img = cv2.drawContours(img, [H], -1, 2, -1)
|
| 15 |
+
return img
|
| 16 |
+
|
| 17 |
+
def drawOnTop(img, landmarks, original_shape):
|
| 18 |
+
h, w = original_shape
|
| 19 |
+
output = getDenseMask(landmarks, h, w)
|
| 20 |
+
image = np.zeros([h,w,3])
|
| 21 |
+
image[:,:,0] = img + 0.3*(output==1).astype('float') - 0.1*(output==2).astype('float')
|
| 22 |
+
image[:,:,1] = img + 0.3*(output==2).astype('float') - 0.1*(output==1).astype('float')
|
| 23 |
+
image[:,:,2] = img - 0.1*(output==1).astype('float') - 0.2*(output==2).astype('float')
|
| 24 |
+
image = np.clip(image,0,1)
|
| 25 |
+
RL, LL, H = landmarks[:44], landmarks[44:94], landmarks[94:]
|
| 26 |
+
for l in RL: image = cv2.circle(image,(int(l[0]),int(l[1])),5,(1,0,1),-1)
|
| 27 |
+
for l in LL: image = cv2.circle(image,(int(l[0]),int(l[1])),5,(1,0,1),-1)
|
| 28 |
+
for l in H: image = cv2.circle(image,(int(l[0]),int(l[1])),5,(1,1,0),-1)
|
| 29 |
+
return image
|
| 30 |
+
|
| 31 |
+
def create_overlay(img, landmarks):
|
| 32 |
+
h, w = img.shape[:2]
|
| 33 |
+
dense_mask = getDenseMask(landmarks, h, w)
|
| 34 |
+
overlay = np.zeros([h, w, 3])
|
| 35 |
+
|
| 36 |
+
overlay[:,:,0] = img + 0.3 * (dense_mask == 1).astype('float') - 0.1 * (dense_mask == 2).astype('float')
|
| 37 |
+
overlay[:,:,1] = img + 0.3 * (dense_mask == 2).astype('float') - 0.1 * (dense_mask == 1).astype('float')
|
| 38 |
+
overlay[:,:,2] = img - 0.1 * (dense_mask == 1).astype('float') - 0.2 * (dense_mask == 2).astype('float')
|
| 39 |
+
overlay = np.clip(overlay, 0, 1)
|
| 40 |
+
|
| 41 |
+
return overlay
|
| 42 |
+
|
| 43 |
+
def plot_side_by_side_comparison(img_orig, means_orig, uncertainty_orig, img_corr, means_corr, uncertainty_corr):
|
| 44 |
+
|
| 45 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 7))
|
| 46 |
+
|
| 47 |
+
fig.set_constrained_layout(True)
|
| 48 |
+
|
| 49 |
+
vmax = max(np.max(np.mean(uncertainty_orig, axis=1)), np.max(np.mean(uncertainty_corr, axis=1)))
|
| 50 |
+
|
| 51 |
+
# --- Original ---
|
| 52 |
+
overlay_orig = create_overlay(img_orig, means_orig)
|
| 53 |
+
ax1.imshow(overlay_orig)
|
| 54 |
+
scatter1 = ax1.scatter(
|
| 55 |
+
means_orig[:, 0], means_orig[:, 1],
|
| 56 |
+
c=np.mean(uncertainty_orig, axis=1),
|
| 57 |
+
cmap='hot', s=50, vmin=0, vmax=vmax
|
| 58 |
+
)
|
| 59 |
+
ax1.set_title("Original", fontsize=16, pad=10)
|
| 60 |
+
ax1.axis('off')
|
| 61 |
+
|
| 62 |
+
# --- Corrupted ---
|
| 63 |
+
overlay_corr = create_overlay(img_corr, means_corr)
|
| 64 |
+
ax2.imshow(overlay_corr)
|
| 65 |
+
scatter2 = ax2.scatter(
|
| 66 |
+
means_corr[:, 0], means_corr[:, 1],
|
| 67 |
+
c=np.mean(uncertainty_corr, axis=1),
|
| 68 |
+
cmap='hot', s=50, vmin=0, vmax=vmax
|
| 69 |
+
)
|
| 70 |
+
ax2.set_title("Corrupted", fontsize=16, pad=10)
|
| 71 |
+
ax2.axis('off')
|
| 72 |
+
|
| 73 |
+
# Shared colorbar
|
| 74 |
+
cbar = fig.colorbar(scatter2, ax=[ax1, ax2], fraction=0.046, pad=0.01, shrink=0.85)
|
| 75 |
+
cbar.ax.tick_params(labelsize=10)
|
| 76 |
+
|
| 77 |
+
return fig
|
utils/segmentation.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import scipy.sparse as sp
|
| 5 |
+
import sys
|
| 6 |
+
import os
|
| 7 |
+
from zipfile import ZipFile
|
| 8 |
+
from .plotting import plot_side_by_side_comparison
|
| 9 |
+
|
| 10 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
| 11 |
+
from models.HybridGNet2IGSC import Hybrid
|
| 12 |
+
|
| 13 |
+
hybrid = None
|
| 14 |
+
|
| 15 |
+
def scipy_to_torch_sparse(scp_matrix):
|
| 16 |
+
values = scp_matrix.data
|
| 17 |
+
indices = np.vstack((scp_matrix.row, scp_matrix.col))
|
| 18 |
+
i = torch.LongTensor(indices)
|
| 19 |
+
v = torch.FloatTensor(values)
|
| 20 |
+
shape = scp_matrix.shape
|
| 21 |
+
|
| 22 |
+
sparse_tensor = torch.sparse.FloatTensor(i, v, torch.Size(shape))
|
| 23 |
+
return sparse_tensor
|
| 24 |
+
|
| 25 |
+
## Adjacency Matrix
|
| 26 |
+
def mOrgan(N):
|
| 27 |
+
sub = np.zeros([N, N])
|
| 28 |
+
for i in range(0, N):
|
| 29 |
+
sub[i, i-1] = 1
|
| 30 |
+
sub[i, (i+1)%N] = 1
|
| 31 |
+
return sub
|
| 32 |
+
|
| 33 |
+
## Downsampling Matrix
|
| 34 |
+
def mOrganD(N):
|
| 35 |
+
N2 = int(np.ceil(N/2))
|
| 36 |
+
sub = np.zeros([N2, N])
|
| 37 |
+
|
| 38 |
+
for i in range(0, N2):
|
| 39 |
+
if (2*i+1) == N:
|
| 40 |
+
sub[i, 2*i] = 1
|
| 41 |
+
else:
|
| 42 |
+
sub[i, 2*i] = 1/2
|
| 43 |
+
sub[i, 2*i+1] = 1/2
|
| 44 |
+
|
| 45 |
+
return sub
|
| 46 |
+
|
| 47 |
+
def mOrganU(N):
|
| 48 |
+
N2 = int(np.ceil(N/2))
|
| 49 |
+
sub = np.zeros([N, N2])
|
| 50 |
+
|
| 51 |
+
for i in range(0, N):
|
| 52 |
+
if i % 2 == 0:
|
| 53 |
+
sub[i, i//2] = 1
|
| 54 |
+
else:
|
| 55 |
+
sub[i, i//2] = 1/2
|
| 56 |
+
sub[i, (i//2 + 1) % N2] = 1/2
|
| 57 |
+
|
| 58 |
+
return sub
|
| 59 |
+
|
| 60 |
+
def genMatrixesLungsHeart():
|
| 61 |
+
RLUNG = 44
|
| 62 |
+
LLUNG = 50
|
| 63 |
+
HEART = 26
|
| 64 |
+
|
| 65 |
+
Asub1 = mOrgan(RLUNG)
|
| 66 |
+
Asub2 = mOrgan(LLUNG)
|
| 67 |
+
Asub3 = mOrgan(HEART)
|
| 68 |
+
|
| 69 |
+
ADsub1 = mOrgan(int(np.ceil(RLUNG / 2)))
|
| 70 |
+
ADsub2 = mOrgan(int(np.ceil(LLUNG / 2)))
|
| 71 |
+
ADsub3 = mOrgan(int(np.ceil(HEART / 2)))
|
| 72 |
+
|
| 73 |
+
Dsub1 = mOrganD(RLUNG)
|
| 74 |
+
Dsub2 = mOrganD(LLUNG)
|
| 75 |
+
Dsub3 = mOrganD(HEART)
|
| 76 |
+
|
| 77 |
+
Usub1 = mOrganU(RLUNG)
|
| 78 |
+
Usub2 = mOrganU(LLUNG)
|
| 79 |
+
Usub3 = mOrganU(HEART)
|
| 80 |
+
|
| 81 |
+
p1 = RLUNG
|
| 82 |
+
p2 = p1 + LLUNG
|
| 83 |
+
p3 = p2 + HEART
|
| 84 |
+
|
| 85 |
+
p1_ = int(np.ceil(RLUNG / 2))
|
| 86 |
+
p2_ = p1_ + int(np.ceil(LLUNG / 2))
|
| 87 |
+
p3_ = p2_ + int(np.ceil(HEART / 2))
|
| 88 |
+
|
| 89 |
+
A = np.zeros([p3, p3])
|
| 90 |
+
|
| 91 |
+
A[:p1, :p1] = Asub1
|
| 92 |
+
A[p1:p2, p1:p2] = Asub2
|
| 93 |
+
A[p2:p3, p2:p3] = Asub3
|
| 94 |
+
|
| 95 |
+
AD = np.zeros([p3_, p3_])
|
| 96 |
+
|
| 97 |
+
AD[:p1_, :p1_] = ADsub1
|
| 98 |
+
AD[p1_:p2_, p1_:p2_] = ADsub2
|
| 99 |
+
AD[p2_:p3_, p2_:p3_] = ADsub3
|
| 100 |
+
|
| 101 |
+
D = np.zeros([p3_, p3])
|
| 102 |
+
|
| 103 |
+
D[:p1_, :p1] = Dsub1
|
| 104 |
+
D[p1_:p2_, p1:p2] = Dsub2
|
| 105 |
+
D[p2_:p3_, p2:p3] = Dsub3
|
| 106 |
+
|
| 107 |
+
U = np.zeros([p3, p3_])
|
| 108 |
+
|
| 109 |
+
U[:p1, :p1_] = Usub1
|
| 110 |
+
U[p1:p2, p1_:p2_] = Usub2
|
| 111 |
+
U[p2:p3, p2_:p3_] = Usub3
|
| 112 |
+
|
| 113 |
+
return A, AD, D, U
|
| 114 |
+
|
| 115 |
+
def zip_files(files, output_name="complete_results.zip"):
|
| 116 |
+
with ZipFile(output_name, "w") as zipObj:
|
| 117 |
+
for file in files:
|
| 118 |
+
zipObj.write(file, arcname=file.split("/")[-1])
|
| 119 |
+
return output_name
|
| 120 |
+
|
| 121 |
+
def getMasks(landmarks, h, w):
|
| 122 |
+
RL, LL, H = landmarks[:44], landmarks[44:94], landmarks[94:]
|
| 123 |
+
RL_mask, LL_mask, H_mask = [np.zeros([h, w], dtype='uint8') for _ in range(3)]
|
| 124 |
+
RL_mask = cv2.drawContours(RL_mask, [RL.reshape(-1,1,2).astype('int')], -1, 255, -1)
|
| 125 |
+
LL_mask = cv2.drawContours(LL_mask, [LL.reshape(-1,1,2).astype('int')], -1, 255, -1)
|
| 126 |
+
H_mask = cv2.drawContours(H_mask, [H.reshape(-1,1,2).astype('int')], -1, 255, -1)
|
| 127 |
+
return RL_mask, LL_mask, H_mask
|
| 128 |
+
|
| 129 |
+
def pad_to_square(img):
|
| 130 |
+
h, w = img.shape[:2]
|
| 131 |
+
if h > w:
|
| 132 |
+
padw = h - w
|
| 133 |
+
auxw = padw % 2
|
| 134 |
+
img = np.pad(img, ((0,0),(padw//2, padw//2+auxw)), 'constant')
|
| 135 |
+
return img, (0, padw, 0, auxw)
|
| 136 |
+
else:
|
| 137 |
+
padh = w - h
|
| 138 |
+
auxh = padh % 2
|
| 139 |
+
img = np.pad(img, ((padh//2, padh//2+auxh),(0,0)), 'constant')
|
| 140 |
+
return img, (padh, 0, auxh, 0)
|
| 141 |
+
|
| 142 |
+
def preprocess(img):
|
| 143 |
+
img, padding = pad_to_square(img)
|
| 144 |
+
h, w = img.shape[:2]
|
| 145 |
+
if h != 1024 or w != 1024:
|
| 146 |
+
img = cv2.resize(img, (1024,1024), interpolation=cv2.INTER_CUBIC)
|
| 147 |
+
return img, (h, w, padding)
|
| 148 |
+
|
| 149 |
+
def removePreprocess(output, info):
|
| 150 |
+
h, w, padding = info
|
| 151 |
+
padh, padw, auxh, auxw = padding
|
| 152 |
+
if h != 1024 or w != 1024:
|
| 153 |
+
output = output * h
|
| 154 |
+
else:
|
| 155 |
+
output = output * 1024
|
| 156 |
+
output[:,:,0] -= padw//2
|
| 157 |
+
output[:,:,1] -= padh//2
|
| 158 |
+
return output
|
| 159 |
+
|
| 160 |
+
def loadModel(device):
|
| 161 |
+
global hybrid
|
| 162 |
+
A, AD, D, U = genMatrixesLungsHeart()
|
| 163 |
+
N1, N2 = A.shape[0], AD.shape[0]
|
| 164 |
+
A, AD, D, U = [sp.csc_matrix(x).tocoo() for x in [A, AD, D, U]]
|
| 165 |
+
D_, U_ = [D.copy()], [U.copy()]
|
| 166 |
+
A_ = [A.copy(), A.copy(), A.copy(), AD.copy(), AD.copy(), AD.copy()]
|
| 167 |
+
config = {'n_nodes':[N1,N1,N1,N2,N2,N2], 'latents':64, 'inputsize':1024,
|
| 168 |
+
'filters':[2,32,32,32,16,16,16], 'skip_features':32, 'eval_sampling':True}
|
| 169 |
+
A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_,D_,U_))
|
| 170 |
+
hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device)
|
| 171 |
+
hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=device))
|
| 172 |
+
hybrid.eval()
|
| 173 |
+
return hybrid
|
| 174 |
+
|
| 175 |
+
def predict_landmarks(img, n_samples=100):
|
| 176 |
+
global hybrid
|
| 177 |
+
img_proc, (h, w, padding) = preprocess(img)
|
| 178 |
+
data = torch.from_numpy(img_proc).unsqueeze(0).unsqueeze(0).to(next(hybrid.parameters()).device).float()
|
| 179 |
+
with torch.no_grad():
|
| 180 |
+
mu, log_var, conv6, conv5 = hybrid.encode(data)
|
| 181 |
+
zs = [hybrid.sampling(mu, log_var) for _ in range(n_samples)]
|
| 182 |
+
z_exp = torch.stack(zs, dim=0)
|
| 183 |
+
conv6_exp, conv5_exp = conv6.repeat(n_samples,1,1,1), conv5.repeat(n_samples,1,1,1)
|
| 184 |
+
output, _, _ = hybrid.decode(z_exp, conv6_exp, conv5_exp)
|
| 185 |
+
output = output.cpu().numpy().reshape(n_samples,-1,2)
|
| 186 |
+
output = removePreprocess(output, (h,w,padding)).astype('int')
|
| 187 |
+
means, stds = np.mean(output,axis=0), np.std(output,axis=0)
|
| 188 |
+
return means, stds
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def segment(input_img, noise_std=0.0):
|
| 192 |
+
"""
|
| 193 |
+
input_img: dict with keys "image" (numpy array) and optionally "mask"
|
| 194 |
+
noise_std: standard deviation of Gaussian noise to add for robustness
|
| 195 |
+
Returns: path to comparison figure, list of saved files
|
| 196 |
+
"""
|
| 197 |
+
global hybrid
|
| 198 |
+
|
| 199 |
+
if hybrid is None:
|
| 200 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 201 |
+
hybrid = loadModel(device)
|
| 202 |
+
|
| 203 |
+
# Original image and corrupted version
|
| 204 |
+
img_orig = input_img["image"].astype(np.float32) / 255.0
|
| 205 |
+
mask = input_img.get("mask", None)
|
| 206 |
+
if mask is not None:
|
| 207 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY).astype(np.float32) / 255.0
|
| 208 |
+
mask = 1.0 - mask
|
| 209 |
+
img_corr = np.minimum(img_orig, mask)
|
| 210 |
+
else:
|
| 211 |
+
img_corr = img_orig.copy()
|
| 212 |
+
|
| 213 |
+
if noise_std > 0:
|
| 214 |
+
noise = np.random.normal(0, noise_std, img_corr.shape)
|
| 215 |
+
img_corr = np.clip(img_corr + noise, 0.0, 1.0)
|
| 216 |
+
|
| 217 |
+
# Predict landmarks
|
| 218 |
+
means_orig, stds_orig = predict_landmarks(img_orig)
|
| 219 |
+
means_corr, stds_corr = predict_landmarks(img_corr)
|
| 220 |
+
|
| 221 |
+
# Save landmarks and masks
|
| 222 |
+
os.makedirs("tmp", exist_ok=True)
|
| 223 |
+
|
| 224 |
+
RL, LL, H = means_orig[:44], means_orig[44:94], means_orig[94:]
|
| 225 |
+
np.savetxt("tmp/RL_landmarks.txt", RL, delimiter=" ", fmt="%d")
|
| 226 |
+
np.savetxt("tmp/LL_landmarks.txt", LL, delimiter=" ", fmt="%d")
|
| 227 |
+
np.savetxt("tmp/H_landmarks.txt", H, delimiter=" ", fmt="%d")
|
| 228 |
+
|
| 229 |
+
RL_mask, LL_mask, H_mask = getMasks(means_orig, img_orig.shape[0], img_orig.shape[1])
|
| 230 |
+
cv2.imwrite("tmp/RL_mask.png", RL_mask)
|
| 231 |
+
cv2.imwrite("tmp/LL_mask.png", LL_mask)
|
| 232 |
+
cv2.imwrite("tmp/H_mask.png", H_mask)
|
| 233 |
+
|
| 234 |
+
RL_std, LL_std, H_std = stds_orig[:44], stds_orig[44:94], stds_orig[94:]
|
| 235 |
+
np.savetxt("tmp/RL_std.txt", RL_std, delimiter=" ", fmt="%.4f")
|
| 236 |
+
np.savetxt("tmp/LL_std.txt", LL_std, delimiter=" ", fmt="%.4f")
|
| 237 |
+
np.savetxt("tmp/H_std.txt", H_std, delimiter=" ", fmt="%.4f")
|
| 238 |
+
|
| 239 |
+
zipf = zip_files([
|
| 240 |
+
"tmp/RL_landmarks.txt","tmp/LL_landmarks.txt","tmp/H_landmarks.txt",
|
| 241 |
+
"tmp/RL_mask.png","tmp/LL_mask.png","tmp/H_mask.png",
|
| 242 |
+
"tmp/RL_std.txt","tmp/LL_std.txt","tmp/H_std.txt"
|
| 243 |
+
])
|
| 244 |
+
|
| 245 |
+
# Optional: plot side-by-side comparison
|
| 246 |
+
fig = plot_side_by_side_comparison(img_orig, means_orig, stds_orig, img_corr, means_corr, stds_corr)
|
| 247 |
+
output_path = "tmp/segmentation_comparison.png"
|
| 248 |
+
fig.savefig(output_path, dpi=300)
|
| 249 |
+
import matplotlib.pyplot as plt
|
| 250 |
+
plt.close(fig)
|
| 251 |
+
|
| 252 |
+
saved_files = [
|
| 253 |
+
"tmp/RL_landmarks.txt","tmp/LL_landmarks.txt","tmp/H_landmarks.txt",
|
| 254 |
+
"tmp/RL_mask.png","tmp/LL_mask.png","tmp/H_mask.png",
|
| 255 |
+
"tmp/RL_std.txt","tmp/LL_std.txt","tmp/H_std.txt",
|
| 256 |
+
zipf
|
| 257 |
+
]
|
| 258 |
+
|
| 259 |
+
return output_path, saved_files
|
utils/utils.py
DELETED
|
@@ -1,103 +0,0 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import scipy.sparse as sp
|
| 3 |
-
import torch
|
| 4 |
-
|
| 5 |
-
def scipy_to_torch_sparse(scp_matrix):
|
| 6 |
-
values = scp_matrix.data
|
| 7 |
-
indices = np.vstack((scp_matrix.row, scp_matrix.col))
|
| 8 |
-
i = torch.LongTensor(indices)
|
| 9 |
-
v = torch.FloatTensor(values)
|
| 10 |
-
shape = scp_matrix.shape
|
| 11 |
-
|
| 12 |
-
sparse_tensor = torch.sparse.FloatTensor(i, v, torch.Size(shape))
|
| 13 |
-
return sparse_tensor
|
| 14 |
-
|
| 15 |
-
## Adjacency Matrix
|
| 16 |
-
def mOrgan(N):
|
| 17 |
-
sub = np.zeros([N, N])
|
| 18 |
-
for i in range(0, N):
|
| 19 |
-
sub[i, i-1] = 1
|
| 20 |
-
sub[i, (i+1)%N] = 1
|
| 21 |
-
return sub
|
| 22 |
-
|
| 23 |
-
## Downsampling Matrix
|
| 24 |
-
def mOrganD(N):
|
| 25 |
-
N2 = int(np.ceil(N/2))
|
| 26 |
-
sub = np.zeros([N2, N])
|
| 27 |
-
|
| 28 |
-
for i in range(0, N2):
|
| 29 |
-
if (2*i+1) == N:
|
| 30 |
-
sub[i, 2*i] = 1
|
| 31 |
-
else:
|
| 32 |
-
sub[i, 2*i] = 1/2
|
| 33 |
-
sub[i, 2*i+1] = 1/2
|
| 34 |
-
|
| 35 |
-
return sub
|
| 36 |
-
|
| 37 |
-
def mOrganU(N):
|
| 38 |
-
N2 = int(np.ceil(N/2))
|
| 39 |
-
sub = np.zeros([N, N2])
|
| 40 |
-
|
| 41 |
-
for i in range(0, N):
|
| 42 |
-
if i % 2 == 0:
|
| 43 |
-
sub[i, i//2] = 1
|
| 44 |
-
else:
|
| 45 |
-
sub[i, i//2] = 1/2
|
| 46 |
-
sub[i, (i//2 + 1) % N2] = 1/2
|
| 47 |
-
|
| 48 |
-
return sub
|
| 49 |
-
|
| 50 |
-
def genMatrixesLungsHeart():
|
| 51 |
-
RLUNG = 44
|
| 52 |
-
LLUNG = 50
|
| 53 |
-
HEART = 26
|
| 54 |
-
|
| 55 |
-
Asub1 = mOrgan(RLUNG)
|
| 56 |
-
Asub2 = mOrgan(LLUNG)
|
| 57 |
-
Asub3 = mOrgan(HEART)
|
| 58 |
-
|
| 59 |
-
ADsub1 = mOrgan(int(np.ceil(RLUNG / 2)))
|
| 60 |
-
ADsub2 = mOrgan(int(np.ceil(LLUNG / 2)))
|
| 61 |
-
ADsub3 = mOrgan(int(np.ceil(HEART / 2)))
|
| 62 |
-
|
| 63 |
-
Dsub1 = mOrganD(RLUNG)
|
| 64 |
-
Dsub2 = mOrganD(LLUNG)
|
| 65 |
-
Dsub3 = mOrganD(HEART)
|
| 66 |
-
|
| 67 |
-
Usub1 = mOrganU(RLUNG)
|
| 68 |
-
Usub2 = mOrganU(LLUNG)
|
| 69 |
-
Usub3 = mOrganU(HEART)
|
| 70 |
-
|
| 71 |
-
p1 = RLUNG
|
| 72 |
-
p2 = p1 + LLUNG
|
| 73 |
-
p3 = p2 + HEART
|
| 74 |
-
|
| 75 |
-
p1_ = int(np.ceil(RLUNG / 2))
|
| 76 |
-
p2_ = p1_ + int(np.ceil(LLUNG / 2))
|
| 77 |
-
p3_ = p2_ + int(np.ceil(HEART / 2))
|
| 78 |
-
|
| 79 |
-
A = np.zeros([p3, p3])
|
| 80 |
-
|
| 81 |
-
A[:p1, :p1] = Asub1
|
| 82 |
-
A[p1:p2, p1:p2] = Asub2
|
| 83 |
-
A[p2:p3, p2:p3] = Asub3
|
| 84 |
-
|
| 85 |
-
AD = np.zeros([p3_, p3_])
|
| 86 |
-
|
| 87 |
-
AD[:p1_, :p1_] = ADsub1
|
| 88 |
-
AD[p1_:p2_, p1_:p2_] = ADsub2
|
| 89 |
-
AD[p2_:p3_, p2_:p3_] = ADsub3
|
| 90 |
-
|
| 91 |
-
D = np.zeros([p3_, p3])
|
| 92 |
-
|
| 93 |
-
D[:p1_, :p1] = Dsub1
|
| 94 |
-
D[p1_:p2_, p1:p2] = Dsub2
|
| 95 |
-
D[p2_:p3_, p2:p3] = Dsub3
|
| 96 |
-
|
| 97 |
-
U = np.zeros([p3, p3_])
|
| 98 |
-
|
| 99 |
-
U[:p1, :p1_] = Usub1
|
| 100 |
-
U[p1:p2, p1_:p2_] = Usub2
|
| 101 |
-
U[p2:p3, p2_:p3_] = Usub3
|
| 102 |
-
|
| 103 |
-
return A, AD, D, U
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|