mathiaszinnen's picture
Initialize app
3e99b05
# Copyright (c) IDEA, Inc. and its affiliates.
# Modified from Mask2Former https://github.com/facebookresearch/Mask2Former by Feng Li and Hao Zhang.
from typing import Tuple
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
from detectron2.utils.memory import retry_if_cuda_oom
from .modeling.criterion import SetCriterion
from .modeling.matcher import HungarianMatcher
from .utils import box_ops
@META_ARCH_REGISTRY.register()
class MaskDINO(nn.Module):
"""
Main class for mask classification semantic segmentation architectures.
"""
# @configurable
def __init__(
self,
*,
backbone: Backbone,
sem_seg_head: nn.Module,
criterion: nn.Module,
num_queries: int,
object_mask_threshold: float,
overlap_threshold: float,
metadata,
size_divisibility: int,
sem_seg_postprocess_before_inference: bool,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
# inference
semantic_on: bool,
panoptic_on: bool,
instance_on: bool,
test_topk_per_image: int,
# data_loader: str,
pano_temp: float,
focus_on_box: bool = False,
transform_eval: bool = False,
semantic_ce_loss: bool = False,
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
sem_seg_head: a module that predicts semantic segmentation from backbone features
criterion: a module that defines the loss
num_queries: int, number of queries
object_mask_threshold: float, threshold to filter query based on classification score
for panoptic segmentation inference
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
segmentation inference
size_divisibility: Some backbones require the input height and width to be divisible by a
specific integer. We can use this to override such requirement.
sem_seg_postprocess_before_inference: whether to resize the prediction back
to original input size before semantic segmentation inference or after.
For high-resolution dataset like Mapillary, resizing predictions before
inference will cause OOM error.
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
semantic_on: bool, whether to output semantic segmentation prediction
instance_on: bool, whether to output instance segmentation prediction
panoptic_on: bool, whether to output panoptic segmentation prediction
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
"""
super().__init__()
self.backbone = backbone
self.pano_temp = pano_temp
self.sem_seg_head = sem_seg_head
self.criterion = criterion
self.num_queries = num_queries
self.overlap_threshold = overlap_threshold
self.object_mask_threshold = object_mask_threshold
self.metadata = metadata
if size_divisibility < 0:
# use backbone size_divisibility if not set
size_divisibility = self.backbone.size_divisibility
self.size_divisibility = size_divisibility
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
# additional args
self.semantic_on = semantic_on
self.instance_on = instance_on
self.panoptic_on = panoptic_on
self.test_topk_per_image = test_topk_per_image
# self.data_loader = data_loader
# if 'detr' in data_loader:
# self.flag = eval_flag
self.focus_on_box = focus_on_box
self.transform_eval = transform_eval
self.semantic_ce_loss = semantic_ce_loss
if not self.semantic_on:
assert self.sem_seg_postprocess_before_inference
print('criterion.weight_dict ', self.criterion.weight_dict)
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "instances": per-region ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
each dict has the results for one image. The dict contains the following keys:
* "sem_seg":
A Tensor that represents the
per-pixel segmentation prediced by the head.
The prediction has shape KxHxW that represents the logits of
each class for each pixel.
* "panoptic_seg":
A tuple that represent panoptic output
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
Each dict contains keys "id", "category_id", "isthing".
"""
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
features = self.backbone(images.tensor)
if self.training:
# dn_args={"scalar":30,"noise_scale":0.4}
# mask classification target
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
# if 'detr' in self.data_loader:
# targets = self.prepare_targets_detr(gt_instances, images)
# else:
targets = self.prepare_targets(gt_instances, images)
else:
targets = None
outputs,mask_dict = self.sem_seg_head(features,targets=targets)
# bipartite matching-based loss
losses = self.criterion(outputs, targets,mask_dict)
for k in list(losses.keys()):
if k in self.criterion.weight_dict:
losses[k] *= self.criterion.weight_dict[k]
else:
# remove this loss if not specified in `weight_dict`
losses.pop(k)
return losses
else:
outputs, _ = self.sem_seg_head(features)
mask_cls_results = outputs["pred_logits"]
mask_pred_results = outputs["pred_masks"]
mask_box_results = outputs["pred_boxes"]
# upsample masks
mask_pred_results = F.interpolate(
mask_pred_results,
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)
del outputs
# import ipdb; ipdb.set_trace()
processed_results = []
for mask_cls_result, mask_pred_result, mask_box_result, input_per_image, image_size in zip(
mask_cls_results, mask_pred_results, mask_box_results, batched_inputs, images.image_sizes
): # image_size is augmented size, not divisible to 32
height = input_per_image["height"]#, image_size[0]) # real size
width = input_per_image["width"]#, image_size[1])
processed_results.append({})
new_size = mask_pred_result.shape[-2:] # padded size (divisible to 32)
# import ipdb; ipdb.set_trace()
if self.sem_seg_postprocess_before_inference:
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)
mask_cls_result = mask_cls_result.to(mask_pred_result)
# mask_box_result = mask_box_result.to(mask_pred_result)
# mask_box_result = self.box_postprocess(mask_box_result, height, width)
# semantic segmentation inference
if self.semantic_on:
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result)
if not self.sem_seg_postprocess_before_inference:
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
processed_results[-1]["sem_seg"] = r
# panoptic segmentation inference
if self.panoptic_on:
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
processed_results[-1]["panoptic_seg"] = panoptic_r
# import ipdb; ipdb.set_trace()
# instance segmentation inference
# import ipdb; ipdb.set_trace()
if self.instance_on:
mask_box_result = mask_box_result.to(mask_pred_result)
height = new_size[0]/image_size[0]*height
width = new_size[1]/image_size[1]*width
mask_box_result = self.box_postprocess(mask_box_result, height, width)
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, mask_box_result)
processed_results[-1]["instances"] = instance_r
return processed_results
def prepare_targets(self, targets, images):
h_pad, w_pad = images.tensor.shape[-2:]
new_targets = []
for targets_per_image in targets:
# pad gt
h, w = targets_per_image.image_size
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
# print(images.tensor.shape[-2:], image_size_xyxy)
# import ipdb; ipdb.set_trace()
gt_masks = targets_per_image.gt_masks
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
new_targets.append(
{
"labels": targets_per_image.gt_classes,
"masks": padded_masks,
"boxes":box_ops.box_xyxy_to_cxcywh(targets_per_image.gt_boxes.tensor)/image_size_xyxy
}
)
return new_targets
def prepare_targets_detr(self, targets, images):
h_pad, w_pad = images.tensor.shape[-2:]
new_targets = []
for targets_per_image in targets:
# pad gt
h, w = targets_per_image.image_size
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
# print(images.tensor.shape[-2:], image_size_xyxy)
# import ipdb; ipdb.set_trace()
gt_masks = targets_per_image.gt_masks
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
new_targets.append(
{
"labels": targets_per_image.gt_classes,
"masks": padded_masks,
"boxes": box_ops.box_xyxy_to_cxcywh(targets_per_image.gt_boxes.tensor) / image_size_xyxy
}
)
return new_targets
def semantic_inference(self, mask_cls, mask_pred):
# if use cross-entropy loss in training, evaluate with softmax
if self.semantic_ce_loss:
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
mask_pred = mask_pred.sigmoid()
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
return semseg
# if use focal loss in training, evaluate with sigmoid. As sigmoid is mainly for detection and not sharp
# enough for semantic and panoptic segmentation, we additionally use use softmax with a temperature to
# make the score sharper.
else:
T = self.pano_temp
mask_cls = mask_cls.sigmoid()
if self.transform_eval:
# mask_cls = (mask_cls * 2.5 + 1.0).sigmoid()
mask_cls = F.softmax(mask_cls / T, dim=-1) # already sigmoid
mask_pred = mask_pred.sigmoid()
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
return semseg
def panoptic_inference(self, mask_cls, mask_pred):
# As we use focal loss in training, evaluate with sigmoid. As sigmoid is mainly for detection and not sharp
# enough for semantic and panoptic segmentation, we additionally use use softmax with a temperature to
# make the score sharper.
prob = 0.5
T = self.pano_temp
scores, labels = mask_cls.sigmoid().max(-1)
mask_pred = mask_pred.sigmoid()
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
# added process
if self.transform_eval:
scores, labels = F.softmax(mask_cls.sigmoid() / T, dim=-1).max(-1)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_masks = mask_pred[keep]
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
h, w = cur_masks.shape[-2:]
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
segments_info = []
current_segment_id = 0
if cur_masks.shape[0] == 0:
# We didn't detect any mask :(
return panoptic_seg, segments_info
else:
# take argmax
cur_mask_ids = cur_prob_masks.argmax(0)
stuff_memory_list = {}
for k in range(cur_classes.shape[0]):
pred_class = cur_classes[k].item()
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values()
mask_area = (cur_mask_ids == k).sum().item()
original_area = (cur_masks[k] >= prob).sum().item()
mask = (cur_mask_ids == k) & (cur_masks[k] >= prob)
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
if mask_area / original_area < self.overlap_threshold:
continue
# merge stuff regions
if not isthing:
if int(pred_class) in stuff_memory_list.keys():
panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
continue
else:
stuff_memory_list[int(pred_class)] = current_segment_id + 1
current_segment_id += 1
panoptic_seg[mask] = current_segment_id
segments_info.append(
{
"id": current_segment_id,
"isthing": bool(isthing),
"category_id": int(pred_class),
}
)
return panoptic_seg, segments_info
def instance_inference(self, mask_cls, mask_pred, mask_box_result):
# mask_pred is already processed to have the same shape as original input
image_size = mask_pred.shape[-2:]
scores = mask_cls.sigmoid() # [100, 80]
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) # select 100
labels_per_image = labels[topk_indices]
topk_indices = torch.div(topk_indices, self.sem_seg_head.num_classes,rounding_mode='floor')
mask_pred = mask_pred[topk_indices]
# if this is panoptic segmentation, we only keep the "thing" classes
if self.panoptic_on:
keep = torch.zeros_like(scores_per_image).bool()
for i, lab in enumerate(labels_per_image):
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values()
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
mask_pred = mask_pred[keep]
result = Instances(image_size)
# mask (before sigmoid)
result.pred_masks = (mask_pred > 0).float()
# half mask box half pred box
mask_box_result = mask_box_result[topk_indices]
if self.panoptic_on:
mask_box_result = mask_box_result[keep]
result.pred_boxes = Boxes(mask_box_result)
# Uncomment the following to get boxes from masks (this is slow)
# result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
# calculate average mask prob
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
if self.focus_on_box:
mask_scores_per_image = 1.0
result.scores = scores_per_image * mask_scores_per_image
result.pred_classes = labels_per_image
return result
def box_postprocess(self, out_bbox, img_h, img_w):
# postprocess box height and width
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
scale_fct = torch.tensor([img_w, img_h, img_w, img_h])
scale_fct = scale_fct.to(out_bbox)
boxes = boxes * scale_fct
return boxes