Spaces:
Runtime error
Runtime error
# Copyright (c) IDEA, Inc. and its affiliates. | |
# Modified from Mask2Former https://github.com/facebookresearch/Mask2Former by Feng Li and Hao Zhang. | |
from typing import Tuple | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import configurable | |
from detectron2.data import MetadataCatalog | |
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head | |
from detectron2.modeling.backbone import Backbone | |
from detectron2.modeling.postprocessing import sem_seg_postprocess | |
from detectron2.structures import Boxes, ImageList, Instances, BitMasks | |
from detectron2.utils.memory import retry_if_cuda_oom | |
from .modeling.criterion import SetCriterion | |
from .modeling.matcher import HungarianMatcher | |
from .utils import box_ops | |
class MaskDINO(nn.Module): | |
""" | |
Main class for mask classification semantic segmentation architectures. | |
""" | |
# @configurable | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
sem_seg_head: nn.Module, | |
criterion: nn.Module, | |
num_queries: int, | |
object_mask_threshold: float, | |
overlap_threshold: float, | |
metadata, | |
size_divisibility: int, | |
sem_seg_postprocess_before_inference: bool, | |
pixel_mean: Tuple[float], | |
pixel_std: Tuple[float], | |
# inference | |
semantic_on: bool, | |
panoptic_on: bool, | |
instance_on: bool, | |
test_topk_per_image: int, | |
# data_loader: str, | |
pano_temp: float, | |
focus_on_box: bool = False, | |
transform_eval: bool = False, | |
semantic_ce_loss: bool = False, | |
): | |
""" | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
sem_seg_head: a module that predicts semantic segmentation from backbone features | |
criterion: a module that defines the loss | |
num_queries: int, number of queries | |
object_mask_threshold: float, threshold to filter query based on classification score | |
for panoptic segmentation inference | |
overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
segmentation inference | |
size_divisibility: Some backbones require the input height and width to be divisible by a | |
specific integer. We can use this to override such requirement. | |
sem_seg_postprocess_before_inference: whether to resize the prediction back | |
to original input size before semantic segmentation inference or after. | |
For high-resolution dataset like Mapillary, resizing predictions before | |
inference will cause OOM error. | |
pixel_mean, pixel_std: list or tuple with #channels element, representing | |
the per-channel mean and std to be used to normalize the input image | |
semantic_on: bool, whether to output semantic segmentation prediction | |
instance_on: bool, whether to output instance segmentation prediction | |
panoptic_on: bool, whether to output panoptic segmentation prediction | |
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image | |
""" | |
super().__init__() | |
self.backbone = backbone | |
self.pano_temp = pano_temp | |
self.sem_seg_head = sem_seg_head | |
self.criterion = criterion | |
self.num_queries = num_queries | |
self.overlap_threshold = overlap_threshold | |
self.object_mask_threshold = object_mask_threshold | |
self.metadata = metadata | |
if size_divisibility < 0: | |
# use backbone size_divisibility if not set | |
size_divisibility = self.backbone.size_divisibility | |
self.size_divisibility = size_divisibility | |
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference | |
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) | |
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) | |
# additional args | |
self.semantic_on = semantic_on | |
self.instance_on = instance_on | |
self.panoptic_on = panoptic_on | |
self.test_topk_per_image = test_topk_per_image | |
# self.data_loader = data_loader | |
# if 'detr' in data_loader: | |
# self.flag = eval_flag | |
self.focus_on_box = focus_on_box | |
self.transform_eval = transform_eval | |
self.semantic_ce_loss = semantic_ce_loss | |
if not self.semantic_on: | |
assert self.sem_seg_postprocess_before_inference | |
print('criterion.weight_dict ', self.criterion.weight_dict) | |
def device(self): | |
return self.pixel_mean.device | |
def forward(self, batched_inputs): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "instances": per-region ground truth | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model (may be different | |
from input resolution), used in inference. | |
Returns: | |
list[dict]: | |
each dict has the results for one image. The dict contains the following keys: | |
* "sem_seg": | |
A Tensor that represents the | |
per-pixel segmentation prediced by the head. | |
The prediction has shape KxHxW that represents the logits of | |
each class for each pixel. | |
* "panoptic_seg": | |
A tuple that represent panoptic output | |
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
Each dict contains keys "id", "category_id", "isthing". | |
""" | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
features = self.backbone(images.tensor) | |
if self.training: | |
# dn_args={"scalar":30,"noise_scale":0.4} | |
# mask classification target | |
if "instances" in batched_inputs[0]: | |
gt_instances = [x["instances"].to(self.device) for x in batched_inputs] | |
# if 'detr' in self.data_loader: | |
# targets = self.prepare_targets_detr(gt_instances, images) | |
# else: | |
targets = self.prepare_targets(gt_instances, images) | |
else: | |
targets = None | |
outputs,mask_dict = self.sem_seg_head(features,targets=targets) | |
# bipartite matching-based loss | |
losses = self.criterion(outputs, targets,mask_dict) | |
for k in list(losses.keys()): | |
if k in self.criterion.weight_dict: | |
losses[k] *= self.criterion.weight_dict[k] | |
else: | |
# remove this loss if not specified in `weight_dict` | |
losses.pop(k) | |
return losses | |
else: | |
outputs, _ = self.sem_seg_head(features) | |
mask_cls_results = outputs["pred_logits"] | |
mask_pred_results = outputs["pred_masks"] | |
mask_box_results = outputs["pred_boxes"] | |
# upsample masks | |
mask_pred_results = F.interpolate( | |
mask_pred_results, | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
del outputs | |
# import ipdb; ipdb.set_trace() | |
processed_results = [] | |
for mask_cls_result, mask_pred_result, mask_box_result, input_per_image, image_size in zip( | |
mask_cls_results, mask_pred_results, mask_box_results, batched_inputs, images.image_sizes | |
): # image_size is augmented size, not divisible to 32 | |
height = input_per_image["height"]#, image_size[0]) # real size | |
width = input_per_image["width"]#, image_size[1]) | |
processed_results.append({}) | |
new_size = mask_pred_result.shape[-2:] # padded size (divisible to 32) | |
# import ipdb; ipdb.set_trace() | |
if self.sem_seg_postprocess_before_inference: | |
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
mask_pred_result, image_size, height, width | |
) | |
mask_cls_result = mask_cls_result.to(mask_pred_result) | |
# mask_box_result = mask_box_result.to(mask_pred_result) | |
# mask_box_result = self.box_postprocess(mask_box_result, height, width) | |
# semantic segmentation inference | |
if self.semantic_on: | |
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result) | |
if not self.sem_seg_postprocess_before_inference: | |
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) | |
processed_results[-1]["sem_seg"] = r | |
# panoptic segmentation inference | |
if self.panoptic_on: | |
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) | |
processed_results[-1]["panoptic_seg"] = panoptic_r | |
# import ipdb; ipdb.set_trace() | |
# instance segmentation inference | |
# import ipdb; ipdb.set_trace() | |
if self.instance_on: | |
mask_box_result = mask_box_result.to(mask_pred_result) | |
height = new_size[0]/image_size[0]*height | |
width = new_size[1]/image_size[1]*width | |
mask_box_result = self.box_postprocess(mask_box_result, height, width) | |
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, mask_box_result) | |
processed_results[-1]["instances"] = instance_r | |
return processed_results | |
def prepare_targets(self, targets, images): | |
h_pad, w_pad = images.tensor.shape[-2:] | |
new_targets = [] | |
for targets_per_image in targets: | |
# pad gt | |
h, w = targets_per_image.image_size | |
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device) | |
# print(images.tensor.shape[-2:], image_size_xyxy) | |
# import ipdb; ipdb.set_trace() | |
gt_masks = targets_per_image.gt_masks | |
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks | |
new_targets.append( | |
{ | |
"labels": targets_per_image.gt_classes, | |
"masks": padded_masks, | |
"boxes":box_ops.box_xyxy_to_cxcywh(targets_per_image.gt_boxes.tensor)/image_size_xyxy | |
} | |
) | |
return new_targets | |
def prepare_targets_detr(self, targets, images): | |
h_pad, w_pad = images.tensor.shape[-2:] | |
new_targets = [] | |
for targets_per_image in targets: | |
# pad gt | |
h, w = targets_per_image.image_size | |
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device) | |
# print(images.tensor.shape[-2:], image_size_xyxy) | |
# import ipdb; ipdb.set_trace() | |
gt_masks = targets_per_image.gt_masks | |
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks | |
new_targets.append( | |
{ | |
"labels": targets_per_image.gt_classes, | |
"masks": padded_masks, | |
"boxes": box_ops.box_xyxy_to_cxcywh(targets_per_image.gt_boxes.tensor) / image_size_xyxy | |
} | |
) | |
return new_targets | |
def semantic_inference(self, mask_cls, mask_pred): | |
# if use cross-entropy loss in training, evaluate with softmax | |
if self.semantic_ce_loss: | |
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
mask_pred = mask_pred.sigmoid() | |
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
return semseg | |
# if use focal loss in training, evaluate with sigmoid. As sigmoid is mainly for detection and not sharp | |
# enough for semantic and panoptic segmentation, we additionally use use softmax with a temperature to | |
# make the score sharper. | |
else: | |
T = self.pano_temp | |
mask_cls = mask_cls.sigmoid() | |
if self.transform_eval: | |
# mask_cls = (mask_cls * 2.5 + 1.0).sigmoid() | |
mask_cls = F.softmax(mask_cls / T, dim=-1) # already sigmoid | |
mask_pred = mask_pred.sigmoid() | |
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
return semseg | |
def panoptic_inference(self, mask_cls, mask_pred): | |
# As we use focal loss in training, evaluate with sigmoid. As sigmoid is mainly for detection and not sharp | |
# enough for semantic and panoptic segmentation, we additionally use use softmax with a temperature to | |
# make the score sharper. | |
prob = 0.5 | |
T = self.pano_temp | |
scores, labels = mask_cls.sigmoid().max(-1) | |
mask_pred = mask_pred.sigmoid() | |
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold) | |
# added process | |
if self.transform_eval: | |
scores, labels = F.softmax(mask_cls.sigmoid() / T, dim=-1).max(-1) | |
cur_scores = scores[keep] | |
cur_classes = labels[keep] | |
cur_masks = mask_pred[keep] | |
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks | |
h, w = cur_masks.shape[-2:] | |
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) | |
segments_info = [] | |
current_segment_id = 0 | |
if cur_masks.shape[0] == 0: | |
# We didn't detect any mask :( | |
return panoptic_seg, segments_info | |
else: | |
# take argmax | |
cur_mask_ids = cur_prob_masks.argmax(0) | |
stuff_memory_list = {} | |
for k in range(cur_classes.shape[0]): | |
pred_class = cur_classes[k].item() | |
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
mask_area = (cur_mask_ids == k).sum().item() | |
original_area = (cur_masks[k] >= prob).sum().item() | |
mask = (cur_mask_ids == k) & (cur_masks[k] >= prob) | |
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: | |
if mask_area / original_area < self.overlap_threshold: | |
continue | |
# merge stuff regions | |
if not isthing: | |
if int(pred_class) in stuff_memory_list.keys(): | |
panoptic_seg[mask] = stuff_memory_list[int(pred_class)] | |
continue | |
else: | |
stuff_memory_list[int(pred_class)] = current_segment_id + 1 | |
current_segment_id += 1 | |
panoptic_seg[mask] = current_segment_id | |
segments_info.append( | |
{ | |
"id": current_segment_id, | |
"isthing": bool(isthing), | |
"category_id": int(pred_class), | |
} | |
) | |
return panoptic_seg, segments_info | |
def instance_inference(self, mask_cls, mask_pred, mask_box_result): | |
# mask_pred is already processed to have the same shape as original input | |
image_size = mask_pred.shape[-2:] | |
scores = mask_cls.sigmoid() # [100, 80] | |
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) # select 100 | |
labels_per_image = labels[topk_indices] | |
topk_indices = torch.div(topk_indices, self.sem_seg_head.num_classes,rounding_mode='floor') | |
mask_pred = mask_pred[topk_indices] | |
# if this is panoptic segmentation, we only keep the "thing" classes | |
if self.panoptic_on: | |
keep = torch.zeros_like(scores_per_image).bool() | |
for i, lab in enumerate(labels_per_image): | |
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
scores_per_image = scores_per_image[keep] | |
labels_per_image = labels_per_image[keep] | |
mask_pred = mask_pred[keep] | |
result = Instances(image_size) | |
# mask (before sigmoid) | |
result.pred_masks = (mask_pred > 0).float() | |
# half mask box half pred box | |
mask_box_result = mask_box_result[topk_indices] | |
if self.panoptic_on: | |
mask_box_result = mask_box_result[keep] | |
result.pred_boxes = Boxes(mask_box_result) | |
# Uncomment the following to get boxes from masks (this is slow) | |
# result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() | |
# calculate average mask prob | |
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
if self.focus_on_box: | |
mask_scores_per_image = 1.0 | |
result.scores = scores_per_image * mask_scores_per_image | |
result.pred_classes = labels_per_image | |
return result | |
def box_postprocess(self, out_bbox, img_h, img_w): | |
# postprocess box height and width | |
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) | |
scale_fct = torch.tensor([img_w, img_h, img_w, img_h]) | |
scale_fct = scale_fct.to(out_bbox) | |
boxes = boxes * scale_fct | |
return boxes | |