mathiaszinnen's picture
Initialize app
3e99b05
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from detrex.layers import FFN, BaseTransformerLayer, MultiheadAttention, TransformerLayerSequence
class DetrTransformerEncoder(TransformerLayerSequence):
def __init__(
self,
embed_dim: int = 256,
num_heads: int = 8,
attn_dropout: float = 0.1,
feedforward_dim: int = 2048,
ffn_dropout: float = 0.1,
num_layers: int = 6,
post_norm: bool = True,
batch_first: bool = False,
):
super(DetrTransformerEncoder, self).__init__(
transformer_layers=BaseTransformerLayer(
attn=MultiheadAttention(
embed_dim=embed_dim,
num_heads=num_heads,
attn_drop=attn_dropout,
batch_first=batch_first,
),
ffn=FFN(
embed_dim=embed_dim,
feedforward_dim=feedforward_dim,
ffn_drop=ffn_dropout,
),
norm=nn.LayerNorm(
normalized_shape=embed_dim,
),
operation_order=("self_attn", "norm", "ffn", "norm"),
),
num_layers=num_layers,
)
self.embed_dim = self.layers[0].embed_dim
self.pre_norm = self.layers[0].pre_norm
if post_norm:
self.post_norm_layer = nn.LayerNorm(self.embed_dim)
else:
self.post_norm_layer = None
def forward(
self,
query,
key,
value,
query_pos=None,
key_pos=None,
attn_masks=None,
query_key_padding_mask=None,
key_padding_mask=None,
**kwargs,
):
for layer in self.layers:
query = layer(
query,
key,
value,
query_pos=query_pos,
key_pos=key_pos,
attn_masks=attn_masks,
query_key_padding_mask=query_key_padding_mask,
key_padding_mask=key_padding_mask,
**kwargs,
)
if self.post_norm_layer is not None:
query = self.post_norm_layer(query)
return query
class DetrTransformerDecoder(TransformerLayerSequence):
def __init__(
self,
embed_dim: int = 256,
num_heads: int = 8,
attn_dropout: float = 0.1,
feedforward_dim: int = 2048,
ffn_dropout: float = 0.1,
num_layers: int = 6,
post_norm: bool = True,
return_intermediate: bool = True,
batch_first: bool = False,
):
super(DetrTransformerDecoder, self).__init__(
transformer_layers=BaseTransformerLayer(
attn=MultiheadAttention(
embed_dim=embed_dim,
num_heads=num_heads,
attn_drop=attn_dropout,
batch_first=batch_first,
),
ffn=FFN(
embed_dim=embed_dim,
feedforward_dim=feedforward_dim,
ffn_drop=ffn_dropout,
),
norm=nn.LayerNorm(
normalized_shape=embed_dim,
),
operation_order=("self_attn", "norm", "cross_attn", "norm", "ffn", "norm"),
),
num_layers=num_layers,
)
self.return_intermediate = return_intermediate
self.embed_dim = self.layers[0].embed_dim
if post_norm:
self.post_norm_layer = nn.LayerNorm(self.embed_dim)
else:
self.post_norm_layer = None
def forward(
self,
query,
key,
value,
query_pos=None,
key_pos=None,
attn_masks=None,
query_key_padding_mask=None,
key_padding_mask=None,
**kwargs,
):
if not self.return_intermediate:
for layer in self.layers:
query = layer(
query,
key,
value,
query_pos=query_pos,
key_pos=key_pos,
attn_masks=attn_masks,
query_key_padding_mask=query_key_padding_mask,
key_padding_mask=key_padding_mask,
**kwargs,
)
if self.post_norm_layer is not None:
query = self.post_norm_layer(query)[None]
return query
# return intermediate
intermediate = []
for layer in self.layers:
query = layer(
query,
key,
value,
query_pos=query_pos,
key_pos=key_pos,
attn_masks=attn_masks,
query_key_padding_mask=query_key_padding_mask,
key_padding_mask=key_padding_mask,
**kwargs,
)
if self.return_intermediate:
if self.post_norm_layer is not None:
intermediate.append(self.post_norm_layer(query))
else:
intermediate.append(query)
return torch.stack(intermediate)
class DetrTransformer(nn.Module):
def __init__(self, encoder=None, decoder=None):
super(DetrTransformer, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.embed_dim = self.encoder.embed_dim
self.init_weights()
def init_weights(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, x, mask, query_embed, pos_embed):
bs, c, h, w = x.shape
x = x.view(bs, c, -1).permute(2, 0, 1) # [bs, c, h, w] -> [h*w, bs, c]
pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1)
query_embed = query_embed.unsqueeze(1).repeat(
1, bs, 1
) # [num_query, dim] -> [num_query, bs, dim]
mask = mask.view(bs, -1) # [bs, h, w] -> [bs, h*w]
memory = self.encoder(
query=x,
key=None,
value=None,
query_pos=pos_embed,
query_key_padding_mask=mask,
)
target = torch.zeros_like(query_embed)
decoder_output = self.decoder(
query=target,
key=memory,
value=memory,
key_pos=pos_embed,
query_pos=query_embed,
key_padding_mask=mask,
)
decoder_output = decoder_output.transpose(1, 2)
memory = memory.permute(1, 2, 0).reshape(bs, c, h, w)
return decoder_output, memory