Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The IDEA Authors. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import torch.nn as nn | |
from detrex.layers import FFN, BaseTransformerLayer, MultiheadAttention, TransformerLayerSequence | |
class DetrTransformerEncoder(TransformerLayerSequence): | |
def __init__( | |
self, | |
embed_dim: int = 256, | |
num_heads: int = 8, | |
attn_dropout: float = 0.1, | |
feedforward_dim: int = 2048, | |
ffn_dropout: float = 0.1, | |
num_layers: int = 6, | |
post_norm: bool = True, | |
batch_first: bool = False, | |
): | |
super(DetrTransformerEncoder, self).__init__( | |
transformer_layers=BaseTransformerLayer( | |
attn=MultiheadAttention( | |
embed_dim=embed_dim, | |
num_heads=num_heads, | |
attn_drop=attn_dropout, | |
batch_first=batch_first, | |
), | |
ffn=FFN( | |
embed_dim=embed_dim, | |
feedforward_dim=feedforward_dim, | |
ffn_drop=ffn_dropout, | |
), | |
norm=nn.LayerNorm( | |
normalized_shape=embed_dim, | |
), | |
operation_order=("self_attn", "norm", "ffn", "norm"), | |
), | |
num_layers=num_layers, | |
) | |
self.embed_dim = self.layers[0].embed_dim | |
self.pre_norm = self.layers[0].pre_norm | |
if post_norm: | |
self.post_norm_layer = nn.LayerNorm(self.embed_dim) | |
else: | |
self.post_norm_layer = None | |
def forward( | |
self, | |
query, | |
key, | |
value, | |
query_pos=None, | |
key_pos=None, | |
attn_masks=None, | |
query_key_padding_mask=None, | |
key_padding_mask=None, | |
**kwargs, | |
): | |
for layer in self.layers: | |
query = layer( | |
query, | |
key, | |
value, | |
query_pos=query_pos, | |
key_pos=key_pos, | |
attn_masks=attn_masks, | |
query_key_padding_mask=query_key_padding_mask, | |
key_padding_mask=key_padding_mask, | |
**kwargs, | |
) | |
if self.post_norm_layer is not None: | |
query = self.post_norm_layer(query) | |
return query | |
class DetrTransformerDecoder(TransformerLayerSequence): | |
def __init__( | |
self, | |
embed_dim: int = 256, | |
num_heads: int = 8, | |
attn_dropout: float = 0.1, | |
feedforward_dim: int = 2048, | |
ffn_dropout: float = 0.1, | |
num_layers: int = 6, | |
post_norm: bool = True, | |
return_intermediate: bool = True, | |
batch_first: bool = False, | |
): | |
super(DetrTransformerDecoder, self).__init__( | |
transformer_layers=BaseTransformerLayer( | |
attn=MultiheadAttention( | |
embed_dim=embed_dim, | |
num_heads=num_heads, | |
attn_drop=attn_dropout, | |
batch_first=batch_first, | |
), | |
ffn=FFN( | |
embed_dim=embed_dim, | |
feedforward_dim=feedforward_dim, | |
ffn_drop=ffn_dropout, | |
), | |
norm=nn.LayerNorm( | |
normalized_shape=embed_dim, | |
), | |
operation_order=("self_attn", "norm", "cross_attn", "norm", "ffn", "norm"), | |
), | |
num_layers=num_layers, | |
) | |
self.return_intermediate = return_intermediate | |
self.embed_dim = self.layers[0].embed_dim | |
if post_norm: | |
self.post_norm_layer = nn.LayerNorm(self.embed_dim) | |
else: | |
self.post_norm_layer = None | |
def forward( | |
self, | |
query, | |
key, | |
value, | |
query_pos=None, | |
key_pos=None, | |
attn_masks=None, | |
query_key_padding_mask=None, | |
key_padding_mask=None, | |
**kwargs, | |
): | |
if not self.return_intermediate: | |
for layer in self.layers: | |
query = layer( | |
query, | |
key, | |
value, | |
query_pos=query_pos, | |
key_pos=key_pos, | |
attn_masks=attn_masks, | |
query_key_padding_mask=query_key_padding_mask, | |
key_padding_mask=key_padding_mask, | |
**kwargs, | |
) | |
if self.post_norm_layer is not None: | |
query = self.post_norm_layer(query)[None] | |
return query | |
# return intermediate | |
intermediate = [] | |
for layer in self.layers: | |
query = layer( | |
query, | |
key, | |
value, | |
query_pos=query_pos, | |
key_pos=key_pos, | |
attn_masks=attn_masks, | |
query_key_padding_mask=query_key_padding_mask, | |
key_padding_mask=key_padding_mask, | |
**kwargs, | |
) | |
if self.return_intermediate: | |
if self.post_norm_layer is not None: | |
intermediate.append(self.post_norm_layer(query)) | |
else: | |
intermediate.append(query) | |
return torch.stack(intermediate) | |
class DetrTransformer(nn.Module): | |
def __init__(self, encoder=None, decoder=None): | |
super(DetrTransformer, self).__init__() | |
self.encoder = encoder | |
self.decoder = decoder | |
self.embed_dim = self.encoder.embed_dim | |
self.init_weights() | |
def init_weights(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, x, mask, query_embed, pos_embed): | |
bs, c, h, w = x.shape | |
x = x.view(bs, c, -1).permute(2, 0, 1) # [bs, c, h, w] -> [h*w, bs, c] | |
pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1) | |
query_embed = query_embed.unsqueeze(1).repeat( | |
1, bs, 1 | |
) # [num_query, dim] -> [num_query, bs, dim] | |
mask = mask.view(bs, -1) # [bs, h, w] -> [bs, h*w] | |
memory = self.encoder( | |
query=x, | |
key=None, | |
value=None, | |
query_pos=pos_embed, | |
query_key_padding_mask=mask, | |
) | |
target = torch.zeros_like(query_embed) | |
decoder_output = self.decoder( | |
query=target, | |
key=memory, | |
value=memory, | |
key_pos=pos_embed, | |
query_pos=query_embed, | |
key_padding_mask=mask, | |
) | |
decoder_output = decoder_output.transpose(1, 2) | |
memory = memory.permute(1, 2, 0).reshape(bs, c, h, w) | |
return decoder_output, memory | |