mathiaszinnen's picture
Initialize app
3e99b05
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from detrex.layers.box_ops import box_cxcywh_to_xyxy
from detrex.modeling.losses import FocalLoss, GIoULoss, L1Loss
from detrex.modeling.matcher import FocalLossCost, GIoUCost, L1Cost, ModifedMatcher
from detrex.utils import get_world_size, is_dist_avail_and_initialized
class BaseCriterion(nn.Module):
"""Base criterion for calculating losses for DETR-like models.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(
self,
num_classes: int,
matcher=ModifedMatcher(
cost_class=FocalLossCost(
alpha=0.25,
gamma=2.0,
weight=2.0,
),
cost_bbox=L1Cost(weight=5.0),
cost_giou=GIoUCost(weight=2.0),
),
loss_class: nn.Module = FocalLoss(
alpha=0.25,
gamma=2.0,
loss_weight=1.0,
),
loss_bbox: nn.Module = L1Loss(loss_weight=5.0),
loss_giou: nn.Module = GIoULoss(eps=1e-6, loss_weight=2.0),
):
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.loss_class = loss_class
self.loss_bbox = loss_bbox
self.loss_giou = loss_giou
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def calculate_class_loss(self, pred_logits, targets, indices, num_boxes):
"""
Args:
preds (torch.Tensor): The predicted logits with shape ``(bs, num_queries, num_classes)``.
targets (dict):
indices (list):
num_boxes (int):
"""
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
pred_logits.shape[:2],
self.num_classes,
dtype=torch.int64,
device=pred_logits.device,
)
target_classes[idx] = target_classes_o
# Compute classification loss
pred_logits = pred_logits.view(-1, self.num_classes)
target_classes = target_classes.flatten()
losses = self.loss_class(pred_logits, target_classes, avg_factor=num_boxes)
return losses
def calculate_bbox_loss(self, pred_boxes, targets, indices, num_boxes):
idx = self._get_src_permutation_idx(indices)
pred_boxes = pred_boxes[idx]
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
# Compute regression loss
losses = self.loss_bbox(pred_boxes, target_boxes, avg_factor=num_boxes)
return losses
def calculate_giou_loss(self, pred_boxes, targets, indices, num_boxes):
idx = self._get_src_permutation_idx(indices)
pred_boxes = pred_boxes[idx]
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
# Convert box format to (x1, y1, x2, y2)
pred_boxes = box_cxcywh_to_xyxy(pred_boxes)
target_boxes = box_cxcywh_to_xyxy(target_boxes)
# Compute iou loss
losses = self.loss_giou(pred_boxes, target_boxes, avg_factor=num_boxes)
return losses
def forward(self, outputs, targets):
output_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
# Collect preds and targets excluding aux_outputs for matcher
pred_logits = output_without_aux["pred_logits"]
pred_boxes = output_without_aux["pred_boxes"]
target_labels_list = [v["labels"] for v in targets]
target_boxes_list = [v["boxes"] for v in targets]
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(
pred_logits,
pred_boxes,
target_labels_list,
target_boxes_list,
)
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_boxes = sum(len(t["labels"]) for t in targets)
num_boxes = torch.as_tensor(
[num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device
)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_boxes)
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
# Compute all losses for DETR-like models
losses = {}
losses["loss_class"] = self.calculate_class_loss(pred_logits, targets, indices, num_boxes)
losses["loss_bbox"] = self.calculate_bbox_loss(pred_boxes, targets, indices, num_boxes)
losses["loss_giou"] = self.calculate_giou_loss(pred_boxes, targets, indices, num_boxes)
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "aux_outputs" in outputs:
for i, aux_output in enumerate(outputs["aux_outputs"]):
aux_pred_logits = aux_output["pred_logits"]
aux_pred_boxes = aux_output["pred_boxes"]
indices = self.matcher(
aux_pred_logits, aux_pred_boxes, target_labels_list, target_boxes_list
)
losses["loss_class" + f"_{i}"] = self.calculate_class_loss(
aux_pred_logits, targets, indices, num_boxes
)
losses["loss_bbox" + f"_{i}"] = self.calculate_bbox_loss(
aux_pred_boxes, targets, indices, num_boxes
)
losses["loss_giou" + f"_{i}"] = self.calculate_giou_loss(
aux_pred_boxes, targets, indices, num_boxes
)
return losses