Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The IDEA Authors. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------------------------------ | |
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# ------------------------------------------------------------------------------------------------ | |
# Modified from: | |
# https://github.com/facebookresearch/ConvNeXt/blob/main/object_detection/mmdet/models/backbones/convnext.py | |
# ------------------------------------------------------------------------------------------------ | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
from timm.models.layers import DropPath, trunc_normal_ | |
from detrex.layers import LayerNorm | |
from detectron2.modeling.backbone import Backbone | |
class Block(nn.Module): | |
r"""ConvNeXt Block. There are two equivalent implementations: | |
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
We use (2) as we find it slightly faster in PyTorch | |
Args: | |
dim (int): Number of input channels. | |
drop_path (float): Stochastic depth rate. Default: 0.0 | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
""" | |
def __init__(self, dim, drop_path=0.0, layer_scale_init_value=1e-6): | |
super().__init__() | |
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv | |
self.norm = LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear( | |
dim, 4 * dim | |
) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(4 * dim, dim) | |
self.gamma = ( | |
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) | |
if layer_scale_init_value > 0 | |
else None | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
def forward(self, x): | |
input = x | |
x = self.dwconv(x) | |
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
x = input + self.drop_path(x) | |
return x | |
class ConvNeXt(Backbone): | |
r"""Implement paper `A ConvNet for the 2020s <https://arxiv.org/pdf/2201.03545.pdf>`_. | |
Args: | |
in_chans (int): Number of input image channels. Default: 3 | |
depths (Sequence[int]): Number of blocks at each stage. Default: [3, 3, 9, 3] | |
dims (List[int]): Feature dimension at each stage. Default: [96, 192, 384, 768] | |
drop_path_rate (float): Stochastic depth rate. Default: 0. | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
out_indices (Sequence[int]): Output from which stages. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. Default: -1. | |
""" | |
def __init__( | |
self, | |
in_chans=3, | |
depths=[3, 3, 9, 3], | |
dims=[96, 192, 384, 768], | |
drop_path_rate=0.0, | |
layer_scale_init_value=1e-6, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=-1, | |
): | |
super().__init__() | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
assert ( | |
self.frozen_stages <= 4 | |
), f"only 4 stages in ConvNeXt model, but got frozen_stages={self.frozen_stages}." | |
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers | |
stem = nn.Sequential( | |
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), | |
LayerNorm(dims[0], eps=1e-6, channel_last=False), | |
) | |
self.downsample_layers.append(stem) | |
for i in range(3): | |
downsample_layer = nn.Sequential( | |
LayerNorm(dims[i], eps=1e-6, channel_last=False), | |
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2), | |
) | |
self.downsample_layers.append(downsample_layer) | |
self.stages = ( | |
nn.ModuleList() | |
) # 4 feature resolution stages, each consisting of multiple residual blocks | |
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] | |
cur = 0 | |
for i in range(4): | |
stage = nn.Sequential( | |
*[ | |
Block( | |
dim=dims[i], | |
drop_path=dp_rates[cur + j], | |
layer_scale_init_value=layer_scale_init_value, | |
) | |
for j in range(depths[i]) | |
] | |
) | |
self.stages.append(stage) | |
cur += depths[i] | |
norm_layer = partial(LayerNorm, eps=1e-6, channel_last=False) | |
for i_layer in out_indices: | |
layer = norm_layer(dims[i_layer]) | |
layer_name = f"norm{i_layer}" | |
self.add_module(layer_name, layer) | |
self._freeze_stages() | |
self._out_features = ["p{}".format(i) for i in self.out_indices] | |
self._out_feature_channels = {"p{}".format(i): dims[i] for i in self.out_indices} | |
self._out_feature_strides = {"p{}".format(i): 2 ** (i + 2) for i in self.out_indices} | |
self._size_devisibility = 32 | |
self.apply(self._init_weights) | |
def _freeze_stages(self): | |
if self.frozen_stages >= 1: | |
for i in range(0, self.frozen_stages): | |
# freeze downsample_layer's parameters | |
downsampler_layer = self.downsample_layers[i] | |
downsampler_layer.eval() | |
for param in downsampler_layer.parameters(): | |
param.requires_grad = False | |
# freeze stage layer's parameters | |
stage = self.stages[i] | |
stage.eval() | |
for param in stage.parameters(): | |
param.requires_grad = False | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, (nn.LayerNorm, LayerNorm)): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward_features(self, x): | |
outs = {} | |
for i in range(4): | |
x = self.downsample_layers[i](x) | |
x = self.stages[i](x) | |
if i in self.out_indices: | |
norm_layer = getattr(self, f"norm{i}") | |
x_out = norm_layer(x) | |
outs["p{}".format(i)] = x_out | |
return outs | |
def forward(self, x): | |
"""Forward function of `ConvNeXt`. | |
Args: | |
x (torch.Tensor): the input tensor for feature extraction. | |
Returns: | |
dict[str->Tensor]: mapping from feature name (e.g., "p1") to tensor | |
""" | |
x = self.forward_features(x) | |
return x | |