|
import gradio as gr |
|
from fastai.vision.all import * |
|
|
|
def is_cat(x): return x[0].isupper() |
|
|
|
if platform.system().lower() == "windows": |
|
import pathlib |
|
posix_path = pathlib.PosixPath |
|
pathlib.PosixPath = pathlib.WindowsPath |
|
learner=load_learner("model.pkl") |
|
if platform.system().lower() == "windows": |
|
pathlib.PosixPath = posix_path |
|
|
|
categories=('Dog','Cat') |
|
def classify_image(img): |
|
pred,idx,prob=learner.predict(img) |
|
return dict(zip(categories,map(float,prob))) |
|
|
|
image=gr.inputs.Image(shape=(192,192)) |
|
label=gr.outputs.Label() |
|
examples=['dog.jpg','cat.jpg','unknown.jpg','cat_2.jpg'] |
|
|
|
intf=gr.Interface(fn=classify_image,inputs=image,outputs=label,examples=examples) |
|
intf.launch(inline=False) |
|
|
|
demo = gr.Interface(fn=greet, inputs="text", outputs="text") |
|
demo.launch() |