Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- .envor.txt +1 -0
- .gitattributes +1 -0
- LegisMiner.pdf +3 -0
- app.py.py +196 -0
- requirements.txt +7 -0
.envor.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ROUTER_API_KEY=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
|
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
LegisMiner.pdf filter=lfs diff=lfs merge=lfs -text
|
LegisMiner.pdf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6702876fa520e29805546201280dfba74e4b6cf7e86c8d6dc03c3f485e7293ec
|
| 3 |
+
size 51675358
|
app.py.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""app
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1PhcQoTZvxdPQe6E1HMx_Nl4Zs_tY7J_y
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import os
|
| 14 |
+
from dotenv import load_dotenv
|
| 15 |
+
from langchain_community.chat_models import ChatOpenAI
|
| 16 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 17 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 18 |
+
from langchain_community.vectorstores import FAISS
|
| 19 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 20 |
+
from langchain.chains import RetrievalQA
|
| 21 |
+
import tempfile
|
| 22 |
+
import numpy as np
|
| 23 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 24 |
+
|
| 25 |
+
# ✅ Carrega variáveis de ambiente
|
| 26 |
+
load_dotenv()
|
| 27 |
+
OPENROUTER_API_KEY = os.getenv("ROUTER_API_KEY")
|
| 28 |
+
|
| 29 |
+
if not OPENROUTER_API_KEY:
|
| 30 |
+
raise ValueError("❌ A variável de ambiente ROUTER_API_KEY não está definida. Verifique o arquivo .env.")
|
| 31 |
+
|
| 32 |
+
# Inicialização
|
| 33 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 34 |
+
qa_chain = None
|
| 35 |
+
processed_file = None
|
| 36 |
+
|
| 37 |
+
# 🔁 Carrega automaticamente o legisMiner.pdf ao iniciar
|
| 38 |
+
def load_default_pdf():
|
| 39 |
+
global qa_chain, processed_file
|
| 40 |
+
try:
|
| 41 |
+
loader = PyPDFLoader("legisMiner.pdf")
|
| 42 |
+
documents = loader.load()
|
| 43 |
+
|
| 44 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 45 |
+
docs = text_splitter.split_documents(documents)
|
| 46 |
+
|
| 47 |
+
vectorstore = FAISS.from_documents(docs, embeddings)
|
| 48 |
+
|
| 49 |
+
llm = ChatOpenAI(
|
| 50 |
+
openai_api_key=OPENROUTER_API_KEY,
|
| 51 |
+
openai_api_base="https://openrouter.ai/api/v1",
|
| 52 |
+
model="deepseek/deepseek-r1-0528:free",
|
| 53 |
+
temperature=0.7
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 57 |
+
llm=llm,
|
| 58 |
+
retriever=vectorstore.as_retriever(),
|
| 59 |
+
return_source_documents=True
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
processed_file = "LegisMiner.pdf"
|
| 63 |
+
print("✅ LegisMiner.pdf carregado automaticamente.")
|
| 64 |
+
except Exception as e:
|
| 65 |
+
print(f"❌ Erro ao carregar LegisMiner.pdf automaticamente: {e}")
|
| 66 |
+
|
| 67 |
+
def calculate_rag_metrics(query, response, source_docs):
|
| 68 |
+
metrics = {}
|
| 69 |
+
try:
|
| 70 |
+
query_embedding = embeddings.embed_query(query)
|
| 71 |
+
response_embedding = embeddings.embed_query(response)
|
| 72 |
+
metrics["query_response_similarity"] = cosine_similarity(
|
| 73 |
+
[query_embedding], [response_embedding]
|
| 74 |
+
)[0][0]
|
| 75 |
+
|
| 76 |
+
doc_similarities = []
|
| 77 |
+
for doc in source_docs:
|
| 78 |
+
doc_embedding = embeddings.embed_query(doc.page_content[:1000])
|
| 79 |
+
similarity = cosine_similarity([response_embedding], [doc_embedding])[0][0]
|
| 80 |
+
doc_similarities.append(similarity)
|
| 81 |
+
|
| 82 |
+
metrics["avg_response_source_similarity"] = np.mean(doc_similarities) if doc_similarities else 0
|
| 83 |
+
metrics["max_response_source_similarity"] = max(doc_similarities) if doc_similarities else 0
|
| 84 |
+
metrics["num_source_documents"] = len(source_docs)
|
| 85 |
+
|
| 86 |
+
except Exception as e:
|
| 87 |
+
metrics["error"] = str(e)
|
| 88 |
+
|
| 89 |
+
return metrics
|
| 90 |
+
|
| 91 |
+
def process_pdf(file):
|
| 92 |
+
global qa_chain, processed_file
|
| 93 |
+
|
| 94 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
| 95 |
+
tmp.write(file)
|
| 96 |
+
pdf_path = tmp.name
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
loader = PyPDFLoader(pdf_path)
|
| 100 |
+
documents = loader.load()
|
| 101 |
+
|
| 102 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 103 |
+
docs = text_splitter.split_documents(documents)
|
| 104 |
+
|
| 105 |
+
vectorstore = FAISS.from_documents(docs, embeddings)
|
| 106 |
+
|
| 107 |
+
llm = ChatOpenAI(
|
| 108 |
+
openai_api_key=OPENROUTER_API_KEY,
|
| 109 |
+
openai_api_base="https://openrouter.ai/api/v1",
|
| 110 |
+
model="deepseek/deepseek-r1-0528-qwen3-8b:free",
|
| 111 |
+
temperature=0.7
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 115 |
+
llm=llm,
|
| 116 |
+
retriever=vectorstore.as_retriever(),
|
| 117 |
+
return_source_documents=True
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
processed_file = os.path.basename(pdf_path)
|
| 121 |
+
return f"✅ PDF processado com sucesso: {processed_file}"
|
| 122 |
+
|
| 123 |
+
except Exception as e:
|
| 124 |
+
return f"❌ Erro ao processar PDF: {str(e)}"
|
| 125 |
+
|
| 126 |
+
def ask_question(question):
|
| 127 |
+
global qa_chain
|
| 128 |
+
|
| 129 |
+
if qa_chain is None:
|
| 130 |
+
return "⚠️ Por favor, carregue um PDF primeiro", "", {}
|
| 131 |
+
|
| 132 |
+
try:
|
| 133 |
+
resposta = qa_chain.invoke({"query": question})
|
| 134 |
+
|
| 135 |
+
sources = "\n\n".join(
|
| 136 |
+
[f"📄 Fonte {i+1}:\n{doc.page_content[:500]}..."
|
| 137 |
+
for i, doc in enumerate(resposta['source_documents'])]
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
metrics = calculate_rag_metrics(
|
| 141 |
+
question,
|
| 142 |
+
resposta['result'],
|
| 143 |
+
resposta['source_documents']
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
metrics_text = "\n".join(
|
| 147 |
+
[f"{k.replace('_', ' ').title()}: {v:.2f}" if isinstance(v, float) else f"{k.replace('_', ' ').title()}: {v}"
|
| 148 |
+
for k, v in metrics.items() if k != "error"]
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
return resposta['result'], sources, metrics_text
|
| 152 |
+
|
| 153 |
+
except Exception as e:
|
| 154 |
+
return f"❌ Erro ao processar pergunta: {str(e)}", "", {}
|
| 155 |
+
|
| 156 |
+
# Interface Gradio
|
| 157 |
+
with gr.Blocks(title="Chat com PDF usando OpenRouter", theme=gr.themes.Soft()) as demo:
|
| 158 |
+
gr.Markdown("# 🧠 Artificial Intelligence Applied to Regulatory Standard Processing in Mining\n### 💡 Development of a Decision Support Tool")
|
| 159 |
+
|
| 160 |
+
with gr.Row():
|
| 161 |
+
with gr.Column(scale=1):
|
| 162 |
+
file_input = gr.File(label="📤 Envie um PDF", type="binary")
|
| 163 |
+
process_btn = gr.Button("Processar PDF", variant="primary")
|
| 164 |
+
status_output = gr.Textbox(label="Status")
|
| 165 |
+
|
| 166 |
+
with gr.Column(scale=2):
|
| 167 |
+
question_input = gr.Textbox(label="Faça uma pergunta sobre Normas da Mineração", lines=3)
|
| 168 |
+
ask_btn = gr.Button("Enviar Pergunta", variant="primary")
|
| 169 |
+
answer_output = gr.Textbox(label="✅ Resposta", interactive=False)
|
| 170 |
+
|
| 171 |
+
with gr.Accordion("📄 Fontes usadas", open=False):
|
| 172 |
+
sources_output = gr.Textbox(label="Trechos relevantes", lines=10)
|
| 173 |
+
|
| 174 |
+
with gr.Accordion("📊 Métricas RAG", open=False):
|
| 175 |
+
metrics_output = gr.Textbox(label="Métricas", lines=4)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
process_btn.click(
|
| 180 |
+
fn=process_pdf,
|
| 181 |
+
inputs=file_input,
|
| 182 |
+
outputs=status_output
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
ask_btn.click(
|
| 186 |
+
fn=ask_question,
|
| 187 |
+
inputs=question_input,
|
| 188 |
+
outputs=[answer_output, sources_output, metrics_output]
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# 🔁 Carrega o PDF fixo ao iniciar
|
| 192 |
+
load_default_pdf()
|
| 193 |
+
|
| 194 |
+
# Compartilhamento opcional no Colab ou Hugging Face
|
| 195 |
+
share = True if 'COLAB_JUPYTER_TRANSPORT' in os.environ else False
|
| 196 |
+
demo.launch(share=share, debug=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
python-dotenv
|
| 3 |
+
langchain
|
| 4 |
+
faiss-cpu
|
| 5 |
+
sentence-transformers
|
| 6 |
+
scikit-learn
|
| 7 |
+
openai
|