Spaces:
Sleeping
Sleeping
mateoluksenberg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
|
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
import io
|
@@ -8,14 +9,13 @@ app = FastAPI()
|
|
8 |
# Load the image classification pipeline
|
9 |
pipe = pipeline("image-classification", model="mateoluksenberg/dit-base-Classifier_CM05")
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
# Async function to classify an image
|
15 |
-
async def classify_image(image_path: str):
|
16 |
try:
|
17 |
-
|
|
|
18 |
|
|
|
19 |
image_bytes = io.BytesIO()
|
20 |
image.save(image_bytes, format='JPEG')
|
21 |
image_bytes = image_bytes.getvalue()
|
@@ -23,21 +23,16 @@ async def classify_image(image_path: str):
|
|
23 |
# Perform image classification
|
24 |
result = pipe(image_bytes)
|
25 |
|
26 |
-
return result[0] # Return the top prediction
|
27 |
|
28 |
except Exception as e:
|
29 |
# Handle exceptions, for example: file not found, image format issues, etc.
|
30 |
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
31 |
|
32 |
@app.get("/")
|
33 |
-
async def home(
|
34 |
-
|
35 |
-
result = await classify_image(image_path)
|
36 |
-
return {"message": "Hello World", "classification_result": result}
|
37 |
-
|
38 |
-
except HTTPException as e:
|
39 |
-
raise e
|
40 |
-
|
41 |
-
except Exception as e:
|
42 |
-
raise HTTPException(status_code=500, detail=f"Error classifying image: {str(e)}")
|
43 |
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
from transformers import pipeline
|
4 |
from PIL import Image
|
5 |
import io
|
|
|
9 |
# Load the image classification pipeline
|
10 |
pipe = pipeline("image-classification", model="mateoluksenberg/dit-base-Classifier_CM05")
|
11 |
|
12 |
+
@app.post("/classify/")
|
13 |
+
async def classify_image(file: UploadFile = File(...)):
|
|
|
|
|
|
|
14 |
try:
|
15 |
+
# Read the file contents into a PIL image
|
16 |
+
image = Image.open(file.file).convert('RGB')
|
17 |
|
18 |
+
# Convert the image to bytes
|
19 |
image_bytes = io.BytesIO()
|
20 |
image.save(image_bytes, format='JPEG')
|
21 |
image_bytes = image_bytes.getvalue()
|
|
|
23 |
# Perform image classification
|
24 |
result = pipe(image_bytes)
|
25 |
|
26 |
+
return {"classification_result": result[0]} # Return the top prediction
|
27 |
|
28 |
except Exception as e:
|
29 |
# Handle exceptions, for example: file not found, image format issues, etc.
|
30 |
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
31 |
|
32 |
@app.get("/")
|
33 |
+
async def home():
|
34 |
+
return {"message": "Hello World"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Sample usage:
|
37 |
+
# 1. Start the FastAPI server
|
38 |
+
# 2. Use a tool like Postman or curl to send a POST request to /classify/ with an image file
|