Clasificador / app.py
mateoluksenberg's picture
Update app.py
22c6cd8 verified
raw
history blame
4.78 kB
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import HTMLResponse
from transformers import pipeline
from PIL import Image
import io
app = FastAPI()
# Load the image classification pipeline
pipe = pipeline("image-classification", model="mateoluksenberg/dit-base-Classifier_CM05")
@app.post("/classify/")
async def classify_image(file: UploadFile = File(...)):
try:
# Read the file contents into a PIL image
image = Image.open(file.file).convert('RGB')
# Perform image classification
result = pipe(image)
# Overall result summary
overall_result = str(result)
# Add overall result as comment to the top result
result_with_comment = {
"label": result[0]['label'],
"score": result[0]['score'],
}
return {"classification_result": result_with_comment, "overall_result": overall_result} # Return the top prediction with comment and overall summary
except Exception as e:
# Handle exceptions, for example: file not found, image format issues, etc.
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
@app.get("/", response_class=HTMLResponse)
async def home():
html_content = """
<!DOCTYPE html>
<html>
<head>
<title>Image Classification</title>
<style>
body {
font-family: Arial, sans-serif;
background-color: #f0f0f0;
margin: 0;
padding: 0;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
flex-direction: column;
}
h1 {
color: #333;
}
form {
margin: 20px 0;
padding: 20px;
background: #fff;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
border-radius: 8px;
}
input[type="file"] {
margin-bottom: 10px;
}
button {
background-color: #4CAF50;
color: white;
border: none;
padding: 10px 20px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
border-radius: 5px;
cursor: pointer;
}
button:hover {
background-color: #45a049;
}
#result, #overall-results {
margin-top: 20px;
padding: 20px;
background: #fff;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
border-radius: 8px;
max-width: 500px;
word-wrap: break-word;
}
</style>
</head>
<body>
<h1>Upload an Image for Classification</h1>
<form id="upload-form" enctype="multipart/form-data">
<input type="file" id="file" name="file" accept="image/*" required />
<button type="submit">Upload</button>
</form>
<div id="result"></div>
<div id="overall-results"></div>
<script>
const form = document.getElementById('upload-form');
form.addEventListener('submit', async (e) => {
e.preventDefault();
const fileInput = document.getElementById('file');
const formData = new FormData();
formData.append('file', fileInput.files[0]);
const response = await fetch('/classify/', {
method: 'POST',
body: formData
});
const result = await response.json();
const resultDiv = document.getElementById('result');
const overallResultsDiv = document.getElementById('overall-results');
if (response.ok) {
resultDiv.innerHTML = `<h2>Top Classification Result:</h2><p>${JSON.stringify(result.classification_result)}</p>`;
overallResultsDiv.innerHTML = `<h2>All Results:</h2><p>${result.overall_result}</p>`;
} else {
resultDiv.innerHTML = `<h2>Error:</h2><p>${result.detail}</p>`;
overallResultsDiv.innerHTML = '';
}
});
</script>
</body>
</html>
"""
return HTMLResponse(content=html_content)
# Sample usage:
# 1. Start the FastAPI server
# 2. Open the browser and navigate to the root URL to upload an image and see the classification result