mat27 commited on
Commit
98de6bd
·
1 Parent(s): fab135b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -15
app.py CHANGED
@@ -1,15 +1,81 @@
1
- from fastapi import FastAPI
2
- from transformers import pipeline
3
-
4
- # Create a new FastAPI app instance
5
- app = FastAPI()
6
-
7
- pipe = pipeline("text2text-generation",
8
- model="mat27/medmnistPrueba")
9
-
10
- @app.get("/generate")
11
- def generate(imagen: np.array):
12
-
13
- output = pipe(imagen)
14
-
15
- return {"Precisión: ": output}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+ import time
4
+
5
+ from huggingface_hub import push_to_hub_keras
6
+ from tensorflow import keras
7
+ from tensorflow.keras import layers
8
+
9
+
10
+ # Model / data parameters
11
+ num_classes = 9
12
+ input_shape = (28, 28, 3)
13
+ batch_size = 1000
14
+ epochs =
15
+
16
+ # Define baseline model
17
+ def baseline_model():
18
+
19
+ # Create model
20
+ model = keras.Sequential(
21
+ [
22
+ keras.Input(shape=input_shape),
23
+ layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
24
+ layers.Conv2D(128, kernel_size=(3, 3), activation="relu"),
25
+ layers.Flatten(),
26
+ layers.Dropout(0.5),
27
+ layers.Dense(num_classes, activation="softmax"),
28
+ ]
29
+ )
30
+ model.summary()
31
+
32
+ # Compile model
33
+ model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
34
+
35
+ return model
36
+
37
+ # Load Data
38
+ path = './pathmnist.npz'
39
+ with np.load(path) as data:
40
+ x_train = data['train_images']
41
+ y_train = data['train_labels']
42
+ x_test = data['test_images']
43
+ y_test = data['test_labels']
44
+ x_val = data['val_images']
45
+ y_val = data['val_labels']
46
+
47
+ # Show DataSet Images
48
+ for image in x_train:
49
+ plt.imshow(image)
50
+ plt.show()
51
+ break
52
+
53
+ # Normalize images to the [0, 1] range
54
+ x_train = x_train.astype("float32") / 255
55
+ x_test = x_test.astype("float32") / 255
56
+ x_val = x_val.astype("float32") / 255
57
+
58
+ print("x_train shape:", x_train.shape)
59
+ print(x_train.shape[0], "train samples")
60
+ print(x_test.shape[0], "test samples")
61
+ print(x_val.shape[0], "test samples")
62
+
63
+ # Convert class vectors to binary class matrices
64
+ y_train = keras.utils.to_categorical(y_train, num_classes)
65
+ y_test = keras.utils.to_categorical(y_test, num_classes)
66
+ y_val = keras.utils.to_categorical(y_val, num_classes)
67
+
68
+ model = baseline_model()
69
+
70
+ # Fit model
71
+ #history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
72
+ inicio = time.time()
73
+ history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_val, y_val))
74
+ fin = time.time()
75
+ print(fin-inicio)
76
+
77
+ # Evaluation of the model
78
+ score = model.evaluate(x_test, y_test, verbose=0)
79
+
80
+ print("Test loss:", score[0])
81
+ print("Test accuracy:", score[1])