Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from model import Net, predict | |
| import torch | |
| import torchvision.transforms as transforms | |
| from PIL import Image | |
| model = Net() | |
| model.load_state_dict(torch.load("mnist_model.pth", map_location=torch.device("cpu"))) | |
| model.eval() | |
| transform = transforms.Compose([ | |
| transforms.Grayscale(), # Convert to grayscale if needed | |
| transforms.Resize((28, 28)), # Fix: pass size as a tuple | |
| transforms.ToTensor() # Convert to a PyTorch tensor | |
| ]) | |
| def predict_image(image): | |
| input_tensors = transform(Image.fromarray(image)).unsqueeze(0) | |
| result = predict(model,input_tensors) | |
| return result | |
| app = gr.Interface(predict_image, gr.Image(), "text") | |
| app.launch() | |