Spaces:
Build error
Build error
| # YOLOv5 π by Ultralytics, GPL-3.0 license | |
| """ | |
| General utils | |
| """ | |
| import glob | |
| import logging | |
| import math | |
| import os | |
| import platform | |
| import random | |
| import re | |
| import shutil | |
| import time | |
| import urllib | |
| from pathlib import Path | |
| import cv2 | |
| import numpy as np | |
| import pandas as pd | |
| import torch | |
| import torchvision | |
| from .metrics import box_iou | |
| # Settings | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[1] # YOLOv5 root directory | |
| NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads | |
| VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode | |
| torch.set_printoptions(linewidth=320, precision=5, profile='long') | |
| np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 | |
| pd.options.display.max_columns = 10 | |
| cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) | |
| os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads | |
| def set_logging(name=None, verbose=VERBOSE): | |
| # Sets level and returns logger | |
| rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings | |
| logging.basicConfig(format="%(message)s", level=logging.INFO if (verbose and rank in (-1, 0)) else logging.WARNING) | |
| return logging.getLogger(name) | |
| LOGGER = set_logging('yolov5') # define globally (used in train.py, val.py, detect.py, etc.) | |
| def try_except(func): | |
| # try-except function. Usage: @try_except decorator | |
| def handler(*args, **kwargs): | |
| try: | |
| func(*args, **kwargs) | |
| except Exception as e: | |
| print(e) | |
| return handler | |
| def methods(instance): | |
| # Get class/instance methods | |
| return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")] | |
| def print_args(name, opt): | |
| # Print argparser arguments | |
| LOGGER.info(colorstr(f'{name}: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) | |
| def init_seeds(seed=0): | |
| # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html | |
| # cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible | |
| import torch.backends.cudnn as cudnn | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False) | |
| def intersect_dicts(da, db, exclude=()): | |
| # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values | |
| return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} | |
| def get_latest_run(search_dir='.'): | |
| # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) | |
| last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) | |
| return max(last_list, key=os.path.getctime) if last_list else '' | |
| def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'): | |
| # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required. | |
| env = os.getenv(env_var) | |
| if env: | |
| path = Path(env) # use environment variable | |
| else: | |
| cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs | |
| path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir | |
| path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable | |
| path.mkdir(exist_ok=True) # make if required | |
| return path | |
| def is_writeable(dir, test=False): | |
| # Return True if directory has write permissions, test opening a file with write permissions if test=True | |
| if test: # method 1 | |
| file = Path(dir) / 'tmp.txt' | |
| try: | |
| with open(file, 'w'): # open file with write permissions | |
| pass | |
| file.unlink() # remove file | |
| return True | |
| except OSError: | |
| return False | |
| else: # method 2 | |
| return os.access(dir, os.R_OK) # possible issues on Windows | |
| def is_ascii(s=''): | |
| # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7) | |
| s = str(s) # convert list, tuple, None, etc. to str | |
| return len(s.encode().decode('ascii', 'ignore')) == len(s) | |
| def is_chinese(s='δΊΊε·₯ζΊθ½'): | |
| # Is string composed of any Chinese characters? | |
| return re.search('[\u4e00-\u9fff]', s) | |
| def emojis(str=''): | |
| # Return platform-dependent emoji-safe version of string | |
| return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str | |
| def file_size(path): | |
| # Return file/dir size (MB) | |
| path = Path(path) | |
| if path.is_file(): | |
| return path.stat().st_size / 1E6 | |
| elif path.is_dir(): | |
| return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6 | |
| else: | |
| return 0.0 | |
| def check_python(minimum='3.6.2'): | |
| # Check current python version vs. required python version | |
| check_version(platform.python_version(), minimum, name='Python ', hard=True) | |
| def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False): | |
| # Check version vs. required version | |
| return True | |
| def check_img_size(imgsz, s=32, floor=0): | |
| # Verify image size is a multiple of stride s in each dimension | |
| if isinstance(imgsz, int): # integer i.e. img_size=640 | |
| new_size = max(make_divisible(imgsz, int(s)), floor) | |
| else: # list i.e. img_size=[640, 480] | |
| new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz] | |
| if new_size != imgsz: | |
| LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}') | |
| return new_size | |
| def url2file(url): | |
| # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt | |
| url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/ | |
| file = Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth | |
| return file | |
| def make_divisible(x, divisor): | |
| # Returns nearest x divisible by divisor | |
| if isinstance(divisor, torch.Tensor): | |
| divisor = int(divisor.max()) # to int | |
| return math.ceil(x / divisor) * divisor | |
| def clean_str(s): | |
| # Cleans a string by replacing special characters with underscore _ | |
| return re.sub(pattern="[|@#!‘·$β¬%&()=?ΒΏ^*;:,¨´><+]", repl="_", string=s) | |
| def one_cycle(y1=0.0, y2=1.0, steps=100): | |
| # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf | |
| return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 | |
| def colorstr(*input): | |
| # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') | |
| *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string | |
| colors = {'black': '\033[30m', # basic colors | |
| 'red': '\033[31m', | |
| 'green': '\033[32m', | |
| 'yellow': '\033[33m', | |
| 'blue': '\033[34m', | |
| 'magenta': '\033[35m', | |
| 'cyan': '\033[36m', | |
| 'white': '\033[37m', | |
| 'bright_black': '\033[90m', # bright colors | |
| 'bright_red': '\033[91m', | |
| 'bright_green': '\033[92m', | |
| 'bright_yellow': '\033[93m', | |
| 'bright_blue': '\033[94m', | |
| 'bright_magenta': '\033[95m', | |
| 'bright_cyan': '\033[96m', | |
| 'bright_white': '\033[97m', | |
| 'end': '\033[0m', # misc | |
| 'bold': '\033[1m', | |
| 'underline': '\033[4m'} | |
| return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] | |
| def labels_to_class_weights(labels, nc=80): | |
| # Get class weights (inverse frequency) from training labels | |
| if labels[0] is None: # no labels loaded | |
| return torch.Tensor() | |
| labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO | |
| classes = labels[:, 0].astype(np.int) # labels = [class xywh] | |
| weights = np.bincount(classes, minlength=nc) # occurrences per class | |
| # Prepend gridpoint count (for uCE training) | |
| # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image | |
| # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start | |
| weights[weights == 0] = 1 # replace empty bins with 1 | |
| weights = 1 / weights # number of targets per class | |
| weights /= weights.sum() # normalize | |
| return torch.from_numpy(weights) | |
| def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): | |
| # Produces image weights based on class_weights and image contents | |
| class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels]) | |
| image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) | |
| # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample | |
| return image_weights | |
| def xyxy2xywh(x): | |
| # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center | |
| y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center | |
| y[:, 2] = x[:, 2] - x[:, 0] # width | |
| y[:, 3] = x[:, 3] - x[:, 1] # height | |
| return y | |
| def xywh2xyxy(x): | |
| # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x | |
| y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y | |
| y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x | |
| y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y | |
| return y | |
| def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): | |
| # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x | |
| y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y | |
| y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x | |
| y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y | |
| return y | |
| def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): | |
| # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right | |
| if clip: | |
| clip_coords(x, (h - eps, w - eps)) # warning: inplace clip | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center | |
| y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center | |
| y[:, 2] = (x[:, 2] - x[:, 0]) / w # width | |
| y[:, 3] = (x[:, 3] - x[:, 1]) / h # height | |
| return y | |
| def xyn2xy(x, w=640, h=640, padw=0, padh=0): | |
| # Convert normalized segments into pixel segments, shape (n,2) | |
| y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
| y[:, 0] = w * x[:, 0] + padw # top left x | |
| y[:, 1] = h * x[:, 1] + padh # top left y | |
| return y | |
| def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): | |
| # Rescale coords (xyxy) from img1_shape to img0_shape | |
| if ratio_pad is None: # calculate from img0_shape | |
| gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new | |
| pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding | |
| else: | |
| gain = ratio_pad[0][0] | |
| pad = ratio_pad[1] | |
| coords[:, [0, 2]] -= pad[0] # x padding | |
| coords[:, [1, 3]] -= pad[1] # y padding | |
| coords[:, :4] /= gain | |
| clip_coords(coords, img0_shape) | |
| return coords | |
| def clip_coords(boxes, shape): | |
| # Clip bounding xyxy bounding boxes to image shape (height, width) | |
| if isinstance(boxes, torch.Tensor): # faster individually | |
| boxes[:, 0].clamp_(0, shape[1]) # x1 | |
| boxes[:, 1].clamp_(0, shape[0]) # y1 | |
| boxes[:, 2].clamp_(0, shape[1]) # x2 | |
| boxes[:, 3].clamp_(0, shape[0]) # y2 | |
| else: # np.array (faster grouped) | |
| boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2 | |
| boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 | |
| def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, | |
| labels=(), max_det=300): | |
| """Runs Non-Maximum Suppression (NMS) on inference results | |
| Returns: | |
| list of detections, on (n,6) tensor per image [xyxy, conf, cls] | |
| """ | |
| nc = prediction.shape[2] - 5 # number of classes | |
| xc = prediction[..., 4] > conf_thres # candidates | |
| # Checks | |
| assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' | |
| assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' | |
| # Settings | |
| min_wh, max_wh = 2, 7680 # (pixels) minimum and maximum box width and height | |
| max_nms = 40000 # maximum number of boxes into torchvision.ops.nms() | |
| time_limit = 10.0 # seconds to quit after | |
| redundant = True # require redundant detections | |
| multi_label = False # True # multiple labels per box (adds 0.5ms/img) | |
| merge = False # use merge-NMS | |
| t = time.time() | |
| output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] | |
| for xi, x in enumerate(prediction): # image index, image inference | |
| # Apply constraints | |
| # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height | |
| x = x[xc[xi]] # confidence | |
| # Cat apriori labels if autolabelling | |
| if labels and len(labels[xi]): | |
| l = labels[xi] | |
| v = torch.zeros((len(l), nc + 5), device=x.device) | |
| v[:, :4] = l[:, 1:5] # box | |
| v[:, 4] = 1.0 # conf | |
| v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls | |
| x = torch.cat((x, v), 0) | |
| # If none remain process next image | |
| if not x.shape[0]: | |
| continue | |
| # Compute conf | |
| x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf | |
| # Box (center x, center y, width, height) to (x1, y1, x2, y2) | |
| box = xywh2xyxy(x[:, :4]) | |
| # Detections matrix nx6 (xyxy, conf, cls) | |
| if multi_label: | |
| i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T | |
| x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) | |
| else: # best class only | |
| conf, j = x[:, 5:].max(1, keepdim=True) | |
| x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] | |
| # Filter by class | |
| if classes is not None: | |
| x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] | |
| # Apply finite constraint | |
| # if not torch.isfinite(x).all(): | |
| # x = x[torch.isfinite(x).all(1)] | |
| # Check shape | |
| n = x.shape[0] # number of boxes | |
| if not n: # no boxes | |
| continue | |
| elif n > max_nms: # excess boxes | |
| x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence | |
| # Batched NMS | |
| c = x[:, 5:6] * (0 if agnostic else max_wh) # classes | |
| boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores | |
| i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS | |
| if i.shape[0] > max_det: # limit detections | |
| i = i[:max_det] | |
| if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) | |
| # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) | |
| iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix | |
| weights = iou * scores[None] # box weights | |
| x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes | |
| if redundant: | |
| i = i[iou.sum(1) > 1] # require redundancy | |
| output[xi] = x[i] | |
| if (time.time() - t) > time_limit: | |
| LOGGER.warning(f'WARNING: NMS time limit {time_limit}s exceeded') | |
| break # time limit exceeded | |
| return output | |
| def increment_path(path, exist_ok=False, sep='', mkdir=False): | |
| # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc. | |
| path = Path(path) # os-agnostic | |
| if path.exists() and not exist_ok: | |
| path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '') | |
| dirs = glob.glob(f"{path}{sep}*") # similar paths | |
| matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] | |
| i = [int(m.groups()[0]) for m in matches if m] # indices | |
| n = max(i) + 1 if i else 2 # increment number | |
| path = Path(f"{path}{sep}{n}{suffix}") # increment path | |
| if mkdir: | |
| path.mkdir(parents=True, exist_ok=True) # make directory | |
| return path | |
| # Variables | |
| NCOLS = shutil.get_terminal_size().columns # terminal window size for tqdm | |