Forecast / app.py
marziehben's picture
Update app.py
61143a1 verified
from datetime import datetime
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
import gradio as gr
import os
import plotly.graph_objects as go
from huggingface_hub import from_pretrained_keras
pd.options.plotting.backend = "plotly"
def predictPPM(df, split):
ts= pd.read_csv('datappm.csv')
df2 =ts.copy()
ttSplit=split/100
ts['Date']=pd.to_datetime(ts['Date'])
ts.rename(columns={'#PPM':'PPM'},inplace=True)
ts=ts.set_index(['Date'])
ts['months'] = [x.month for x in ts.index]
ts['years'] = [x.year for x in ts.index]
ts.reset_index(drop=True, inplace=True)
# Split Data
X=ts.drop("PPM",axis=1)
Y= ts["PPM"]
X_train=X[:int (len(Y)*ttSplit)]
X_test=X[int(len(Y)*ttSplit):]
Y_train=Y[:int (len(Y)*ttSplit)]
Y_test=Y[int(len(Y)*ttSplit):]
# fit the model
rf = RandomForestRegressor()
rf.fit(X_train, Y_train)
df1=df2.set_index(['Date'])
df1.rename(columns={'#PPM':'PPM'},inplace=True)
train=df1.PPM[:int (len(ts.PPM)*ttSplit)]
test=df1.PPM[int(len(ts.PPM)*ttSplit):]
preds=rf.predict(X_test).astype(int)
predictions=pd.DataFrame(preds,columns=['PPM'])
predictions.index=test.index
predictions.reset_index(inplace=True)
predictions['Date']=pd.to_datetime(predictions['Date'])
print(predictions)
#combine all into one table
ts_df=df
train= ts_df[:int (len(ts_df)*ttSplit)]
test= ts_df[int(len(ts_df)*ttSplit):]
df2['Date']=pd.to_datetime(df2['Date'])
df2.rename(columns={'#PPM':'PPM'},inplace=True)
df3= predictions
df2['origin']='status '
df3['origin']='prediction'
df4=pd.concat([df2, df3])
print(df4)
return df4
demo = gr.Interface(
fn =predictPPM,inputs = [gr.UploadButton(label="Input data for PPM TimeSeries"),
gr.Slider(1, 100, value=75, step=1, label="Train test split percentage"),
],
outputs=gr.LinePlot(x='Date', y='PPM', color='origin')
)
demo.launch(debug=True)