DeepSeekMath / app.py
marwashahid's picture
create app.py
6a281d7 verified
from unsloth import FastLanguageModel
import torch
import pandas as pd
from datasets import Dataset
import numpy as np
from sklearn.model_selection import train_test_split
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/tinyllama-bnb-4bit", # "unsloth/tinyllama" for 16bit loading
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
model = FastLanguageModel.get_peft_model(
model,
r = 32, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 32,
lora_dropout = 0, # Currently only supports dropout = 0
bias = "none", # Currently only supports bias = "none"
use_gradient_checkpointing = False, # @@@ IF YOU GET OUT OF MEMORY - set to True @@@
random_state = 3407,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
alpaca_prompt = """Below is an instruction that describes a task, paired with an output that provides correct output for that task. Write a response that produces correct solution to the problem
### Instruction:
{}
### Input:
{}
### Response:
{}"""
EOS_TOKEN = tokenizer.eos_token
def formatting_prompts_func(examples):
instructions = "The problem has the following answer. Understand step-by-step how it is solved to produce the correct solution and then produce the correct solution"
inputs = examples["Riddle"]
outputs = examples["Answer"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
# Must add EOS_TOKEN, otherwise your generation will go on forever!
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
df = pd.read_csv('math_riddles.csv')
train, test = train_test_split(df, test_size=0.2, random_state=42)
train_ds = Dataset.from_pandas(train)
test_ds = Dataset.from_pandas(test)
tokenized_train = train_ds.map(formatting_prompts_func, batched=True,
remove_columns=['Riddle', 'Answer', '__index_level_0__']) # Removing features
tokenized_test = test_ds.map(formatting_prompts_func, batched=True,
remove_columns=['Riddle', 'Answer']) # Removing features
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = tokenized_train,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 24,
packing = True, # Packs short sequences together to save time!
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 1,
warmup_ratio = 0.1,
num_train_epochs = 3,
learning_rate = 2e-5,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.1,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
report_to = "none", # Use this for WandB etc
),
)
trainer_stats = trainer.train()
# Define inference function
def inference(instruction, user_input):
prompt = alpaca_prompt.format(
instruction,
user_input,
"" # Leave output blank for generation
)
inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
outputs = model.generate(
**inputs,
max_new_tokens=64,
use_cache=True
)
# Fix: Define result before printing it
result = tokenizer.batch_decode(outputs)[0]
print(result) # Now you can print it
# Extract just the generated response (after the prompt)
response_prefix = "### Response:"
if response_prefix in result:
result = result.split(response_prefix)[1].strip()
return result
# Create Gradio interface
import gradio as gr
demo = gr.Interface(
fn=inference,
inputs=[
gr.Textbox(label="Instruction", value="Solve the problem"),
gr.Textbox(label="Input", value="There is a three digit number.The second digit is four times as big as the third digit, while the first digit is three less than the second digit.What is the number?")
],
outputs="text",
title="Language Model Interface",
description="Enter an instruction and input to generate a response from the model."
)
demo.launch(share=True)