Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,51 +1,59 @@
|
|
| 1 |
-
|
| 2 |
-
from
|
|
|
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
-
# Model
|
| 6 |
-
|
| 7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
)
|
| 18 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 19 |
-
|
| 20 |
-
# Gradio respond function
|
| 21 |
-
def respond(message, history, system_message, max_tokens, temperature, top_p, hf_token=None):
|
| 22 |
-
prompt = system_message + "\n"
|
| 23 |
-
for h in history:
|
| 24 |
-
prompt += f"User: {h['user']}\nBot: {h['bot']}\n"
|
| 25 |
-
prompt += f"User: {message}\nBot: "
|
| 26 |
-
|
| 27 |
-
response = generate_response(prompt, max_tokens=max_tokens, temperature=temperature)
|
| 28 |
-
yield response
|
| 29 |
-
|
| 30 |
-
# Gradio ChatInterface
|
| 31 |
-
chatbot = gr.ChatInterface(
|
| 32 |
-
respond,
|
| 33 |
-
type="messages",
|
| 34 |
-
additional_inputs=[
|
| 35 |
-
gr.Textbox(value="You are a friendly chatbot.", label="System message"),
|
| 36 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 37 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 38 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
| 39 |
-
],
|
| 40 |
)
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
chatbot.render()
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
from awq import AutoAWQForCausalLM
|
| 3 |
+
from transformers import AutoTokenizer
|
| 4 |
import torch
|
| 5 |
+
import gradio as gr
|
| 6 |
|
| 7 |
+
# Model name from Hugging Face
|
| 8 |
+
MODEL_NAME = "TheBloke/Mistral-7B-v0.1-AWQ"
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Load the model
|
| 11 |
+
print("🚀 Loading Mistral 7B v0.1 AWQ model...")
|
| 12 |
+
model = AutoAWQForCausalLM.from_quantized(
|
| 13 |
+
MODEL_NAME,
|
| 14 |
+
fuse_layers=True,
|
| 15 |
+
trust_remote_code=False,
|
| 16 |
+
safetensors=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
)
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=False)
|
| 19 |
+
print("✅ Model loaded successfully!")
|
| 20 |
|
| 21 |
+
# Text generation function
|
| 22 |
+
def generate_text(prompt, temperature, max_tokens):
|
| 23 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
| 24 |
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
outputs = model.generate(
|
| 27 |
+
inputs.input_ids,
|
| 28 |
+
max_new_tokens=max_tokens,
|
| 29 |
+
temperature=temperature,
|
| 30 |
+
top_p=0.9,
|
| 31 |
+
do_sample=True,
|
| 32 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 36 |
|
| 37 |
+
# Clean the output (remove the original prompt from response)
|
| 38 |
+
if prompt in response:
|
| 39 |
+
response = response[len(prompt):].strip()
|
| 40 |
|
| 41 |
+
return response
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# Gradio Interface
|
| 45 |
+
interface = gr.Interface(
|
| 46 |
+
fn=generate_text,
|
| 47 |
+
inputs=[
|
| 48 |
+
gr.Textbox(lines=3, placeholder="Ask Mistral something...", label="Prompt"),
|
| 49 |
+
gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature"),
|
| 50 |
+
gr.Slider(50, 1024, value=512, step=10, label="Max Tokens")
|
| 51 |
+
],
|
| 52 |
+
outputs=gr.Textbox(lines=10, label="Response"),
|
| 53 |
+
title="🧠 Mistral 7B v0.1 AWQ",
|
| 54 |
+
description="Run the quantized Mistral 7B v0.1 model locally or on Google Colab using Gradio.",
|
| 55 |
+
theme="default"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
if __name__ == "__main__":
|
| 59 |
+
interface.launch(share=True)
|