martivarga commited on
Commit
d136f71
·
verified ·
1 Parent(s): e7b03c7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -3
README.md CHANGED
@@ -55,7 +55,7 @@ Responsible for setting up the document retrieval system:
55
  - Loads PDF documents from `rag_docs/` using `DirectoryLoader`.
56
  - Splits documents into manageable chunks via `RecursiveCharacterTextSplitter`.
57
  - Uses **ChromaDB** as the local vector store for document chunks and embeddings.
58
- - Generates vector representations with `GoogleGenerativeAIEmbeddings`.
59
  - Checks for an existing Chroma database to avoid re-processing documents on every run.
60
 
61
  ### Chatbot Logic and Tools (`chatbot_nodes.py`)
@@ -81,6 +81,7 @@ Defines the agent's behavior and tools:
81
  - Python 3.9+
82
  - pip
83
  - Google API Key
 
84
 
85
  ### Setup
86
  1. Clone the repository and navigate to the project directory.
@@ -90,10 +91,11 @@ Defines the agent's behavior and tools:
90
  pip install -r requirements.txt
91
  ```
92
  3. Place your PDF documents in the rag_docs/ directory.
93
- 4. Create a .env file in the root directory and add your Google API key:
94
 
95
  ```bash
96
  GOOGLE_API_KEY="your_api_key_here"
 
97
  ```
98
  ### Execution
99
  Run the main application:
@@ -124,7 +126,12 @@ This section provides examples of user questions that would trigger the various
124
 
125
  - `get_skills_by_sport(sport: str)`: "What skills are needed for football?"
126
 
127
- - `get_document_answer(query: str)`: "How can I be successful in football based on documentations?"
 
 
 
 
 
128
 
129
  - `get_equipment_by_sport(sport: str)`: "What gears are needed for football?"
130
 
 
55
  - Loads PDF documents from `rag_docs/` using `DirectoryLoader`.
56
  - Splits documents into manageable chunks via `RecursiveCharacterTextSplitter`.
57
  - Uses **ChromaDB** as the local vector store for document chunks and embeddings.
58
+ - Generates vector representations with `CohereEmbeddings`.
59
  - Checks for an existing Chroma database to avoid re-processing documents on every run.
60
 
61
  ### Chatbot Logic and Tools (`chatbot_nodes.py`)
 
81
  - Python 3.9+
82
  - pip
83
  - Google API Key
84
+ - Cohere API Key
85
 
86
  ### Setup
87
  1. Clone the repository and navigate to the project directory.
 
91
  pip install -r requirements.txt
92
  ```
93
  3. Place your PDF documents in the rag_docs/ directory.
94
+ 4. Create a .env file in the root directory and add your Google API key and Cohere API Key:
95
 
96
  ```bash
97
  GOOGLE_API_KEY="your_api_key_here"
98
+ COHERE_API_KEY="your_api_key_here"
99
  ```
100
  ### Execution
101
  Run the main application:
 
126
 
127
  - `get_skills_by_sport(sport: str)`: "What skills are needed for football?"
128
 
129
+ - `get_document_answer(query: str)`:
130
+
131
+ - "How can I be successful in football based on documentations?"
132
+ - "How can influence a football match the location based on the documentation?"
133
+ - "What factors influence the judging in gymnastics based on the documentations?"
134
+ - "What are some specific deductions a gymnast might receive during a competition based on the documentations?"
135
 
136
  - `get_equipment_by_sport(sport: str)`: "What gears are needed for football?"
137