Spaces:
Running
on
Zero
Running
on
Zero
Martin Tomov
commited on
Commit
β’
caabd4b
1
Parent(s):
dd9911e
json output attempt
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import os
|
2 |
-
os.system('pip install gradio==4.29.0')
|
3 |
|
4 |
import random
|
5 |
from dataclasses import dataclass
|
@@ -13,6 +13,7 @@ import matplotlib.pyplot as plt
|
|
13 |
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
|
14 |
import gradio as gr
|
15 |
import spaces
|
|
|
16 |
|
17 |
@dataclass
|
18 |
class BoundingBox:
|
@@ -142,13 +143,11 @@ def extract_and_paste_insect(original_image: np.ndarray, detection: DetectionRes
|
|
142 |
insect_crop = original_image[ymin:ymax, xmin:xmax]
|
143 |
mask_crop = mask[ymin:ymax, xmin:xmax]
|
144 |
|
145 |
-
# Ensure that we keep the original colors of the insect
|
146 |
insect = cv2.bitwise_and(insect_crop, insect_crop, mask=mask_crop)
|
147 |
|
148 |
x_offset, y_offset = xmin, ymin
|
149 |
x_end, y_end = x_offset + insect.shape[1], y_offset + insect.shape[0]
|
150 |
|
151 |
-
# Place the insect onto the yellow background
|
152 |
background[y_offset:y_end, x_offset:x_end] = insect
|
153 |
|
154 |
def create_yellow_background_with_insects(image: np.ndarray, detections: List[DetectionResult]) -> np.ndarray:
|
@@ -158,44 +157,54 @@ def create_yellow_background_with_insects(image: np.ndarray, detections: List[De
|
|
158 |
extract_and_paste_insect(image, detection, yellow_background)
|
159 |
return yellow_background
|
160 |
|
161 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
for detection in detections:
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
(
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
)
|
177 |
-
cv2.putText(
|
178 |
-
image_with_insects,
|
179 |
-
f"{label}: {score:.2f}",
|
180 |
-
(box.xmin, box.ymin - baseline),
|
181 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
182 |
-
0.5,
|
183 |
-
(255, 255, 255),
|
184 |
-
2
|
185 |
-
)
|
186 |
-
return image_with_insects
|
187 |
|
188 |
def process_image(image):
|
189 |
labels = ["insect"]
|
190 |
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
|
191 |
annotated_image = plot_detections(original_image, detections)
|
192 |
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
195 |
|
196 |
gr.Interface(
|
197 |
fn=process_image,
|
198 |
inputs=gr.Image(type="pil"),
|
199 |
-
outputs=[gr.Image(type="numpy"), gr.
|
200 |
title="π InsectSAM + GroundingDINO Inference",
|
201 |
-
).launch()
|
|
|
1 |
import os
|
2 |
+
os.system('pip install gradio==4.29.0')
|
3 |
|
4 |
import random
|
5 |
from dataclasses import dataclass
|
|
|
13 |
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
|
14 |
import gradio as gr
|
15 |
import spaces
|
16 |
+
import json
|
17 |
|
18 |
@dataclass
|
19 |
class BoundingBox:
|
|
|
143 |
insect_crop = original_image[ymin:ymax, xmin:xmax]
|
144 |
mask_crop = mask[ymin:ymax, xmin:xmax]
|
145 |
|
|
|
146 |
insect = cv2.bitwise_and(insect_crop, insect_crop, mask=mask_crop)
|
147 |
|
148 |
x_offset, y_offset = xmin, ymin
|
149 |
x_end, y_end = x_offset + insect.shape[1], y_offset + insect.shape[0]
|
150 |
|
|
|
151 |
background[y_offset:y_end, x_offset:x_end] = insect
|
152 |
|
153 |
def create_yellow_background_with_insects(image: np.ndarray, detections: List[DetectionResult]) -> np.ndarray:
|
|
|
157 |
extract_and_paste_insect(image, detection, yellow_background)
|
158 |
return yellow_background
|
159 |
|
160 |
+
def run_length_encoding(mask):
|
161 |
+
pixels = mask.flatten()
|
162 |
+
rle = []
|
163 |
+
last_val = 0
|
164 |
+
count = 0
|
165 |
+
for pixel in pixels:
|
166 |
+
if pixel == last_val:
|
167 |
+
count += 1
|
168 |
+
else:
|
169 |
+
if count > 0:
|
170 |
+
rle.append(count)
|
171 |
+
count = 1
|
172 |
+
last_val = pixel
|
173 |
+
if count > 0:
|
174 |
+
rle.append(count)
|
175 |
+
return rle
|
176 |
+
|
177 |
+
def detections_to_json(detections):
|
178 |
+
detections_list = []
|
179 |
for detection in detections:
|
180 |
+
detection_dict = {
|
181 |
+
"score": detection.score,
|
182 |
+
"label": detection.label,
|
183 |
+
"box": {
|
184 |
+
"xmin": detection.box.xmin,
|
185 |
+
"ymin": detection.box.ymin,
|
186 |
+
"xmax": detection.box.xmax,
|
187 |
+
"ymax": detection.box.ymax
|
188 |
+
},
|
189 |
+
"mask": run_length_encoding(detection.mask) if detection.mask is not None else None
|
190 |
+
}
|
191 |
+
detections_list.append(detection_dict)
|
192 |
+
return detections_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
def process_image(image):
|
195 |
labels = ["insect"]
|
196 |
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
|
197 |
annotated_image = plot_detections(original_image, detections)
|
198 |
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
|
199 |
+
detections_json = detections_to_json(detections)
|
200 |
+
json_output_path = "insect_detections.json"
|
201 |
+
with open(json_output_path, 'w') as json_file:
|
202 |
+
json.dump(detections_json, json_file, indent=4)
|
203 |
+
return annotated_image, json.dumps(detections_json, separators=(',', ':'))
|
204 |
|
205 |
gr.Interface(
|
206 |
fn=process_image,
|
207 |
inputs=gr.Image(type="pil"),
|
208 |
+
outputs=[gr.Image(type="numpy"), gr.Textbox()],
|
209 |
title="π InsectSAM + GroundingDINO Inference",
|
210 |
+
).launch()
|