Spaces:
No application file
No application file
import base64 | |
from enum import auto, IntEnum | |
from io import BytesIO | |
from pydantic import BaseModel | |
class ImageFormat(IntEnum): | |
"""Image formats.""" | |
URL = auto() | |
LOCAL_FILEPATH = auto() | |
PIL_IMAGE = auto() | |
BYTES = auto() | |
DEFAULT = auto() | |
class Image(BaseModel): | |
url: str = "" | |
filetype: str = "" | |
image_format: ImageFormat = ImageFormat.BYTES | |
base64_str: str = "" | |
def convert_image_to_base64(self): | |
"""Given an image, return the base64 encoded image string.""" | |
from PIL import Image | |
import requests | |
# Load image if it has not been loaded in yet | |
if self.image_format == ImageFormat.URL: | |
response = requests.get(image) | |
image = Image.open(BytesIO(response.content)).convert("RGBA") | |
image_bytes = BytesIO() | |
image.save(image_bytes, format="PNG") | |
elif self.image_format == ImageFormat.LOCAL_FILEPATH: | |
image = Image.open(self.url).convert("RGBA") | |
image_bytes = BytesIO() | |
image.save(image_bytes, format="PNG") | |
elif self.image_format == ImageFormat.BYTES: | |
image_bytes = image | |
img_b64_str = base64.b64encode(image_bytes).decode() | |
return img_b64_str | |
def to_openai_image_format(self): | |
if self.image_format == ImageFormat.URL: # input is a url | |
return self.url | |
elif self.image_format == ImageFormat.LOCAL_FILEPATH: # input is a local image | |
self.base64_str = self.convert_image_to_base64(self.url) | |
return f"data:image/{self.filetype};base64,{self.base64_str}" | |
elif self.image_format == ImageFormat.BYTES: | |
return f"data:image/{self.filetype};base64,{self.base64_str}" | |
else: | |
raise ValueError( | |
f"This file is not valid or not currently supported by the OpenAI API: {self.url}" | |
) | |
def resize_image_and_return_image_in_bytes(self, image, max_image_size_mb): | |
import math | |
image_format = "png" | |
max_hw, min_hw = max(image.size), min(image.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 1024, 1024 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = image.size | |
if longest_edge != max(image.size): | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
image = image.resize((W, H)) | |
image_bytes = BytesIO() | |
image.save(image_bytes, format="PNG") | |
if max_image_size_mb: | |
target_size_bytes = max_image_size_mb * 1024 * 1024 | |
current_size_bytes = image_bytes.tell() | |
if current_size_bytes > target_size_bytes: | |
resize_factor = (target_size_bytes / current_size_bytes) ** 0.5 | |
new_width = math.floor(image.width * resize_factor) | |
new_height = math.floor(image.height * resize_factor) | |
image = image.resize((new_width, new_height)) | |
image_bytes = BytesIO() | |
image.save(image_bytes, format="PNG") | |
current_size_bytes = image_bytes.tell() | |
image_bytes.seek(0) | |
return image_format, image_bytes | |
def convert_url_to_image_bytes(self, max_image_size_mb): | |
from PIL import Image | |
if self.url.endswith(".svg"): | |
import cairosvg | |
with open(self.url, "rb") as svg_file: | |
svg_data = svg_file.read() | |
png_data = cairosvg.svg2png(bytestring=svg_data) | |
pil_image = Image.open(BytesIO(png_data)).convert("RGBA") | |
else: | |
pil_image = Image.open(self.url).convert("RGBA") | |
image_format, image_bytes = self.resize_image_and_return_image_in_bytes( | |
pil_image, max_image_size_mb | |
) | |
img_base64_str = base64.b64encode(image_bytes.getvalue()).decode() | |
return image_format, img_base64_str | |
def to_conversation_format(self, max_image_size_mb): | |
image_format, image_bytes = self.convert_url_to_image_bytes( | |
max_image_size_mb=max_image_size_mb | |
) | |
self.filetype = image_format | |
self.image_format = ImageFormat.BYTES | |
self.base64_str = image_bytes | |
return self | |
if __name__ == "__main__": | |
image = Image(url="fastchat/serve/example_images/fridge.jpg") | |
image.to_conversation_format(max_image_size_mb=5 / 1.5) | |
json_str = image.model_dump_json() | |
print(json_str) | |