Spaces:
No application file
No application file
""" | |
A multi-model worker that contains multiple sub-works one for each model. This | |
supports running a list of models on the same machine so that they can | |
(potentially) share the same background weights. | |
Each model can have one or more model names. | |
This multi-model worker assumes the models shares some underlying weights and | |
thus reports the combined queue lengths for health checks. | |
We recommend using this with multiple Peft models (with `peft` in the name) | |
where all Peft models are trained on the exact same base model. | |
""" | |
import argparse | |
import asyncio | |
import dataclasses | |
import logging | |
import json | |
import os | |
import time | |
from typing import List, Union | |
import threading | |
import uuid | |
from fastapi import FastAPI, Request, BackgroundTasks | |
from fastapi.responses import StreamingResponse, JSONResponse | |
import requests | |
try: | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
LlamaTokenizer, | |
AutoModel, | |
) | |
except ImportError: | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
LLaMATokenizer, | |
AutoModel, | |
) | |
import torch | |
import torch.nn.functional as F | |
import uvicorn | |
from fastchat.constants import WORKER_HEART_BEAT_INTERVAL, ErrorCode, SERVER_ERROR_MSG | |
from fastchat.model.model_adapter import ( | |
load_model, | |
add_model_args, | |
get_conversation_template, | |
) | |
from fastchat.model.model_chatglm import generate_stream_chatglm | |
from fastchat.model.model_falcon import generate_stream_falcon | |
from fastchat.model.model_codet5p import generate_stream_codet5p | |
from fastchat.modules.gptq import GptqConfig | |
from fastchat.modules.exllama import ExllamaConfig | |
from fastchat.modules.xfastertransformer import XftConfig | |
from fastchat.serve.inference import generate_stream | |
from fastchat.serve.model_worker import ModelWorker, worker_id, logger | |
from fastchat.utils import build_logger, pretty_print_semaphore, get_context_length | |
# We store both the underlying workers and a mapping from their model names to | |
# the worker instance. This makes it easy to fetch the appropriate worker for | |
# each API call. | |
workers = [] | |
worker_map = {} | |
app = FastAPI() | |
def release_worker_semaphore(): | |
workers[0].semaphore.release() | |
def acquire_worker_semaphore(): | |
if workers[0].semaphore is None: | |
# Share the same semaphore for all workers because | |
# all workers share the same GPU. | |
semaphore = asyncio.Semaphore(workers[0].limit_worker_concurrency) | |
for w in workers: | |
w.semaphore = semaphore | |
return workers[0].semaphore.acquire() | |
def create_background_tasks(): | |
background_tasks = BackgroundTasks() | |
background_tasks.add_task(release_worker_semaphore) | |
return background_tasks | |
# Note: for all the calls below, we make a hard assumption that the caller | |
# includes the model name in the payload, otherwise we can't figure out which | |
# underlying sub-worker to call. | |
async def api_generate_stream(request: Request): | |
params = await request.json() | |
await acquire_worker_semaphore() | |
worker = worker_map[params["model"]] | |
generator = worker.generate_stream_gate(params) | |
background_tasks = create_background_tasks() | |
return StreamingResponse(generator, background=background_tasks) | |
async def api_generate(request: Request): | |
params = await request.json() | |
await acquire_worker_semaphore() | |
worker = worker_map[params["model"]] | |
output = worker.generate_gate(params) | |
release_worker_semaphore() | |
return JSONResponse(output) | |
async def api_get_embeddings(request: Request): | |
params = await request.json() | |
await acquire_worker_semaphore() | |
worker = worker_map[params["model"]] | |
embedding = worker.get_embeddings(params) | |
background_tasks = create_background_tasks() | |
return JSONResponse(content=embedding, background=background_tasks) | |
async def api_get_status(request: Request): | |
return { | |
"model_names": [m for w in workers for m in w.model_names], | |
"speed": 1, | |
"queue_length": sum([w.get_queue_length() for w in workers]), | |
} | |
async def api_count_token(request: Request): | |
params = await request.json() | |
worker = worker_map[params["model"]] | |
return worker.count_token(params) | |
async def api_get_conv(request: Request): | |
params = await request.json() | |
worker = worker_map[params["model"]] | |
return worker.get_conv_template() | |
async def api_model_details(request: Request): | |
params = await request.json() | |
worker = worker_map[params["model"]] | |
return {"context_length": worker.context_len} | |
def create_multi_model_worker(): | |
# Note: Ensure we resolve arg conflicts. We let `add_model_args` add MOST | |
# of the model args but we'll override one to have an append action that | |
# supports multiple values. | |
parser = argparse.ArgumentParser(conflict_handler="resolve") | |
parser.add_argument("--host", type=str, default="localhost") | |
parser.add_argument("--port", type=int, default=21002) | |
parser.add_argument("--worker-address", type=str, default="http://localhost:21002") | |
parser.add_argument( | |
"--controller-address", type=str, default="http://localhost:21001" | |
) | |
add_model_args(parser) | |
# Override the model path to be repeated and align it with model names. | |
parser.add_argument( | |
"--model-path", | |
type=str, | |
default=[], | |
action="append", | |
help="One or more paths to model weights to load. This can be a local folder or a Hugging Face repo ID.", | |
) | |
parser.add_argument( | |
"--model-names", | |
type=lambda s: s.split(","), | |
action="append", | |
help="One or more model names. Values must be aligned with `--model-path` values.", | |
) | |
parser.add_argument( | |
"--conv-template", | |
type=str, | |
default=None, | |
action="append", | |
help="Conversation prompt template. Values must be aligned with `--model-path` values. If only one value is provided, it will be repeated for all models.", | |
) | |
parser.add_argument("--limit-worker-concurrency", type=int, default=5) | |
parser.add_argument("--stream-interval", type=int, default=2) | |
parser.add_argument("--no-register", action="store_true") | |
parser.add_argument( | |
"--ssl", | |
action="store_true", | |
required=False, | |
default=False, | |
help="Enable SSL. Requires OS Environment variables 'SSL_KEYFILE' and 'SSL_CERTFILE'.", | |
) | |
args = parser.parse_args() | |
logger.info(f"args: {args}") | |
if args.gpus: | |
if len(args.gpus.split(",")) < args.num_gpus: | |
raise ValueError( | |
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!" | |
) | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus | |
gptq_config = GptqConfig( | |
ckpt=args.gptq_ckpt or args.model_path, | |
wbits=args.gptq_wbits, | |
groupsize=args.gptq_groupsize, | |
act_order=args.gptq_act_order, | |
) | |
if args.enable_exllama: | |
exllama_config = ExllamaConfig( | |
max_seq_len=args.exllama_max_seq_len, | |
gpu_split=args.exllama_gpu_split, | |
cache_8bit=args.exllama_cache_8bit, | |
) | |
else: | |
exllama_config = None | |
if args.enable_xft: | |
xft_config = XftConfig( | |
max_seq_len=args.xft_max_seq_len, | |
data_type=args.xft_dtype, | |
) | |
if args.device != "cpu": | |
print("xFasterTransformer now is only support CPUs. Reset device to CPU") | |
args.device = "cpu" | |
else: | |
xft_config = None | |
if args.model_names is None: | |
args.model_names = [[x.split("/")[-1]] for x in args.model_path] | |
if args.conv_template is None: | |
args.conv_template = [None] * len(args.model_path) | |
elif len(args.conv_template) == 1: # Repeat the same template | |
args.conv_template = args.conv_template * len(args.model_path) | |
# Launch all workers | |
workers = [] | |
for conv_template, model_path, model_names in zip( | |
args.conv_template, args.model_path, args.model_names | |
): | |
w = ModelWorker( | |
args.controller_address, | |
args.worker_address, | |
worker_id, | |
model_path, | |
model_names, | |
args.limit_worker_concurrency, | |
args.no_register, | |
device=args.device, | |
num_gpus=args.num_gpus, | |
max_gpu_memory=args.max_gpu_memory, | |
load_8bit=args.load_8bit, | |
cpu_offloading=args.cpu_offloading, | |
gptq_config=gptq_config, | |
exllama_config=exllama_config, | |
xft_config=xft_config, | |
stream_interval=args.stream_interval, | |
conv_template=conv_template, | |
) | |
workers.append(w) | |
for model_name in model_names: | |
worker_map[model_name] = w | |
# Register all models | |
url = args.controller_address + "/register_worker" | |
data = { | |
"worker_name": workers[0].worker_addr, | |
"check_heart_beat": not args.no_register, | |
"worker_status": { | |
"model_names": [m for w in workers for m in w.model_names], | |
"speed": 1, | |
"queue_length": sum([w.get_queue_length() for w in workers]), | |
}, | |
} | |
r = requests.post(url, json=data) | |
assert r.status_code == 200 | |
return args, workers | |
if __name__ == "__main__": | |
args, workers = create_multi_model_worker() | |
if args.ssl: | |
uvicorn.run( | |
app, | |
host=args.host, | |
port=args.port, | |
log_level="info", | |
ssl_keyfile=os.environ["SSL_KEYFILE"], | |
ssl_certfile=os.environ["SSL_CERTFILE"], | |
) | |
else: | |
uvicorn.run(app, host=args.host, port=args.port, log_level="info") | |