Spaces:
No application file
No application file
import argparse | |
import json | |
import pandas as pd | |
import os | |
import re | |
import ast | |
import time | |
import concurrent.futures | |
import tqdm | |
import random | |
import threading | |
LOCK = threading.RLock() | |
## Configs | |
SYSTEM_PROMPT = "Your task is to evaluate how well the following input prompts can assess the capabilities of advanced AI assistants.\n\nFor the input prompt, please analyze it based on the following 7 criteria.\n1. Specificity: Does the prompt ask for a specific output, such as code, a mathematical solution, a logical simplification, a problem-solving strategy, or a hardware setup recommendation? This specificity allows the AI to demonstrate its ability to understand and generate precise responses.\n2. Domain Knowledge: Does the prompt cover a specific domain, such as programming, mathematics, logic, problem-solving, or hardware setup? Prompts spanning a range of topics test the AI's breadth of knowledge and its ability to apply that knowledge to different domains.\n3. Complexity: Does the prompt vary in complexity, from straightforward tasks to more complex, multi-step problems? This allows evaluators to assess the AI's capability to handle problems of varying difficulty.\n4. Problem-Solving Skills: Does the prompt directly involves the AI to demonstrate active problem-solving skills, such systemically coming up with a solution for a specific setup instead of regurgitating an existing fact? This tests the AI's ability to apply logical reasoning and provide practical solutions.\n5. Creativity: Does the prompt involve a level of creativity in approaching the problem? This criterion tests the AI's ability to provide tailored solutions that take into account the user's specific needs and limitations.\n6. Technical Accuracy: Does the prompt require technical accuracy in the response? This allows evaluators to assess the AI's precision and correctness in technical fields.\n7. Real-world Application: Does the prompt relate to real-world applications, such as setting up a functional system or writing code for a practical use case? This tests the AI's ability to provide practical and actionable information that could be implemented in real-life scenarios.\n\nYou must list the criteria numbers that the prompt satisfies in the format of a Python array. For example, \"[...]\". Do not explain your choice." | |
ENDPOINT_INFO = { | |
"model_name": "META-LLAMA/LLAMA-3-70B-CHAT-HF", | |
"name": "llama-3-70b-instruct", | |
"endpoints": [{"api_base": "-", "api_key": "-"}], | |
"parallel": 8, | |
"temperature": 0.0, | |
"max_token": 512, | |
} # Modify this | |
TAGS = { | |
1: "specificity", | |
2: "domain_knowledge", | |
3: "complexity", | |
4: "problem_solving", | |
5: "creativity", | |
6: "technical_accuracy", | |
7: "real_world", | |
} | |
# API setting constants | |
API_MAX_RETRY = 3 | |
API_RETRY_SLEEP = 10 | |
API_ERROR_OUTPUT = "$ERROR$" | |
def get_endpoint(endpoint_list): | |
if endpoint_list is None: | |
return None | |
assert endpoint_list is not None | |
# randomly pick one | |
api_dict = random.choices(endpoint_list)[0] | |
return api_dict | |
pattern = re.compile(r"(\[\d(?:\,\s\d)*\])") | |
def get_score(judgment): | |
matches = pattern.findall(judgment) | |
matches = [m for m in matches if m != ""] | |
if len(set(matches)) == 0: | |
return [] | |
elif len(set(matches)) == 1: | |
try: | |
return ast.literal_eval(matches[0]) | |
except SyntaxError: | |
print(matches[0]) | |
return [] | |
else: | |
return [] | |
def chat_completion_openai(model, messages, temperature, max_tokens, api_dict=None): | |
import openai | |
if api_dict: | |
client = openai.OpenAI( | |
base_url=api_dict["api_base"], | |
api_key=api_dict["api_key"], | |
) | |
else: | |
client = openai.OpenAI() | |
output = API_ERROR_OUTPUT | |
for _ in range(API_MAX_RETRY): | |
try: | |
# print(messages) | |
completion = client.chat.completions.create( | |
model=model, | |
messages=messages, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
# extra_body={"guided_choice": GUIDED_CHOICES} if GUIDED_CHOICES else None, | |
) | |
output = completion.choices[0].message.content | |
break | |
except openai.RateLimitError as e: | |
print(type(e), e) | |
time.sleep(API_RETRY_SLEEP) | |
except openai.BadRequestError as e: | |
print(messages) | |
print(type(e), e) | |
break | |
except openai.APIConnectionError as e: | |
print(messages) | |
print(type(e), e) | |
time.sleep(API_RETRY_SLEEP) | |
except openai.InternalServerError as e: | |
print(messages) | |
print(type(e), e) | |
time.sleep(1) | |
except KeyError: | |
print(type(e), e) | |
break | |
return output | |
def get_answer( | |
question: dict, | |
max_tokens: int, | |
temperature: float, | |
answer_file: str, | |
api_dict: dict, | |
): | |
conv = [] | |
conv.append({"role": "system", "content": SYSTEM_PROMPT}) | |
conv.append({"role": "user", "content": question["prompt"]}) | |
output = chat_completion_openai( | |
model=ENDPOINT_INFO["model_name"], | |
messages=conv, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
api_dict=api_dict, | |
) | |
criteria = get_score(output) | |
# Dump answers | |
question["criteria_tag"] = {name: bool(i in criteria) for i, name in TAGS.items()} | |
question.drop("prompt") | |
with LOCK: | |
with open(answer_file, "a") as fout: | |
fout.write(json.dumps(question.to_dict()) + "\n") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--input-file", type=str, required=True) | |
parser.add_argument("--cache-file", type=str, default=None) | |
parser.add_argument("--output-file", type=str, required=True) | |
parser.add_argument("--convert-to-json", action="store_true") | |
args = parser.parse_args() | |
print("loading input data (might take min)") | |
input_data = pd.read_json(args.input_file) | |
print(f"{len(input_data)}# of input data just loaded") | |
if args.cache_file: | |
print("loading cache data") | |
cache_data = pd.read_json(args.cache_file) | |
print(f"{len(cache_data)}# of cache data just loaded") | |
assert "criteria_tag" in cache_data.columns and len( | |
cache_data["criteria_tag"].dropna() | |
) == len(cache_data) | |
not_labeled = input_data[ | |
~input_data["question_id"].isin(cache_data["question_id"]) | |
].copy() | |
else: | |
not_labeled = input_data.copy() | |
if os.path.isfile(args.output_file): | |
print("loading existing output") | |
output_data = pd.read_json(args.output_file, lines=True) | |
print(f"{len(output_data)}# of existing output just loaded") | |
assert "criteria_tag" in output_data.columns and len( | |
output_data["criteria_tag"].dropna() | |
) == len(output_data) | |
not_labeled = not_labeled[ | |
~not_labeled["question_id"].isin(output_data["question_id"]) | |
] | |
print(f"{len(not_labeled)} needs to be labeled") | |
not_labeled["prompt"] = not_labeled.conversation_a.map( | |
lambda convo: "\n".join([convo[i]["content"] for i in range(0, len(convo), 2)]) | |
) | |
with concurrent.futures.ThreadPoolExecutor( | |
max_workers=ENDPOINT_INFO["parallel"] | |
) as executor: | |
futures = [] | |
for index, row in tqdm.tqdm(not_labeled.iterrows()): | |
future = executor.submit( | |
get_answer, | |
row, | |
ENDPOINT_INFO["max_token"], | |
ENDPOINT_INFO["temperature"], | |
args.output_file, | |
get_endpoint(ENDPOINT_INFO["endpoints"]), | |
) | |
futures.append(future) | |
for future in tqdm.tqdm( | |
concurrent.futures.as_completed(futures), total=len(futures) | |
): | |
future.result() | |
if args.convert_to_json: | |
temp = pd.read_json(args.output_file, lines=True) | |
temp.to_json( | |
args.output_file[:-1], orient="records", indent=4, force_ascii=False | |
) | |