melt / fastchat /serve /monitor /criteria_labeling.py
martinakaduc's picture
Upload folder using huggingface_hub
f3305db verified
import argparse
import json
import pandas as pd
import os
import re
import ast
import time
import concurrent.futures
import tqdm
import random
import threading
LOCK = threading.RLock()
## Configs
SYSTEM_PROMPT = "Your task is to evaluate how well the following input prompts can assess the capabilities of advanced AI assistants.\n\nFor the input prompt, please analyze it based on the following 7 criteria.\n1. Specificity: Does the prompt ask for a specific output, such as code, a mathematical solution, a logical simplification, a problem-solving strategy, or a hardware setup recommendation? This specificity allows the AI to demonstrate its ability to understand and generate precise responses.\n2. Domain Knowledge: Does the prompt cover a specific domain, such as programming, mathematics, logic, problem-solving, or hardware setup? Prompts spanning a range of topics test the AI's breadth of knowledge and its ability to apply that knowledge to different domains.\n3. Complexity: Does the prompt vary in complexity, from straightforward tasks to more complex, multi-step problems? This allows evaluators to assess the AI's capability to handle problems of varying difficulty.\n4. Problem-Solving Skills: Does the prompt directly involves the AI to demonstrate active problem-solving skills, such systemically coming up with a solution for a specific setup instead of regurgitating an existing fact? This tests the AI's ability to apply logical reasoning and provide practical solutions.\n5. Creativity: Does the prompt involve a level of creativity in approaching the problem? This criterion tests the AI's ability to provide tailored solutions that take into account the user's specific needs and limitations.\n6. Technical Accuracy: Does the prompt require technical accuracy in the response? This allows evaluators to assess the AI's precision and correctness in technical fields.\n7. Real-world Application: Does the prompt relate to real-world applications, such as setting up a functional system or writing code for a practical use case? This tests the AI's ability to provide practical and actionable information that could be implemented in real-life scenarios.\n\nYou must list the criteria numbers that the prompt satisfies in the format of a Python array. For example, \"[...]\". Do not explain your choice."
ENDPOINT_INFO = {
"model_name": "META-LLAMA/LLAMA-3-70B-CHAT-HF",
"name": "llama-3-70b-instruct",
"endpoints": [{"api_base": "-", "api_key": "-"}],
"parallel": 8,
"temperature": 0.0,
"max_token": 512,
} # Modify this
TAGS = {
1: "specificity",
2: "domain_knowledge",
3: "complexity",
4: "problem_solving",
5: "creativity",
6: "technical_accuracy",
7: "real_world",
}
# API setting constants
API_MAX_RETRY = 3
API_RETRY_SLEEP = 10
API_ERROR_OUTPUT = "$ERROR$"
def get_endpoint(endpoint_list):
if endpoint_list is None:
return None
assert endpoint_list is not None
# randomly pick one
api_dict = random.choices(endpoint_list)[0]
return api_dict
pattern = re.compile(r"(\[\d(?:\,\s\d)*\])")
def get_score(judgment):
matches = pattern.findall(judgment)
matches = [m for m in matches if m != ""]
if len(set(matches)) == 0:
return []
elif len(set(matches)) == 1:
try:
return ast.literal_eval(matches[0])
except SyntaxError:
print(matches[0])
return []
else:
return []
def chat_completion_openai(model, messages, temperature, max_tokens, api_dict=None):
import openai
if api_dict:
client = openai.OpenAI(
base_url=api_dict["api_base"],
api_key=api_dict["api_key"],
)
else:
client = openai.OpenAI()
output = API_ERROR_OUTPUT
for _ in range(API_MAX_RETRY):
try:
# print(messages)
completion = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
# extra_body={"guided_choice": GUIDED_CHOICES} if GUIDED_CHOICES else None,
)
output = completion.choices[0].message.content
break
except openai.RateLimitError as e:
print(type(e), e)
time.sleep(API_RETRY_SLEEP)
except openai.BadRequestError as e:
print(messages)
print(type(e), e)
break
except openai.APIConnectionError as e:
print(messages)
print(type(e), e)
time.sleep(API_RETRY_SLEEP)
except openai.InternalServerError as e:
print(messages)
print(type(e), e)
time.sleep(1)
except KeyError:
print(type(e), e)
break
return output
def get_answer(
question: dict,
max_tokens: int,
temperature: float,
answer_file: str,
api_dict: dict,
):
conv = []
conv.append({"role": "system", "content": SYSTEM_PROMPT})
conv.append({"role": "user", "content": question["prompt"]})
output = chat_completion_openai(
model=ENDPOINT_INFO["model_name"],
messages=conv,
temperature=temperature,
max_tokens=max_tokens,
api_dict=api_dict,
)
criteria = get_score(output)
# Dump answers
question["criteria_tag"] = {name: bool(i in criteria) for i, name in TAGS.items()}
question.drop("prompt")
with LOCK:
with open(answer_file, "a") as fout:
fout.write(json.dumps(question.to_dict()) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input-file", type=str, required=True)
parser.add_argument("--cache-file", type=str, default=None)
parser.add_argument("--output-file", type=str, required=True)
parser.add_argument("--convert-to-json", action="store_true")
args = parser.parse_args()
print("loading input data (might take min)")
input_data = pd.read_json(args.input_file)
print(f"{len(input_data)}# of input data just loaded")
if args.cache_file:
print("loading cache data")
cache_data = pd.read_json(args.cache_file)
print(f"{len(cache_data)}# of cache data just loaded")
assert "criteria_tag" in cache_data.columns and len(
cache_data["criteria_tag"].dropna()
) == len(cache_data)
not_labeled = input_data[
~input_data["question_id"].isin(cache_data["question_id"])
].copy()
else:
not_labeled = input_data.copy()
if os.path.isfile(args.output_file):
print("loading existing output")
output_data = pd.read_json(args.output_file, lines=True)
print(f"{len(output_data)}# of existing output just loaded")
assert "criteria_tag" in output_data.columns and len(
output_data["criteria_tag"].dropna()
) == len(output_data)
not_labeled = not_labeled[
~not_labeled["question_id"].isin(output_data["question_id"])
]
print(f"{len(not_labeled)} needs to be labeled")
not_labeled["prompt"] = not_labeled.conversation_a.map(
lambda convo: "\n".join([convo[i]["content"] for i in range(0, len(convo), 2)])
)
with concurrent.futures.ThreadPoolExecutor(
max_workers=ENDPOINT_INFO["parallel"]
) as executor:
futures = []
for index, row in tqdm.tqdm(not_labeled.iterrows()):
future = executor.submit(
get_answer,
row,
ENDPOINT_INFO["max_token"],
ENDPOINT_INFO["temperature"],
args.output_file,
get_endpoint(ENDPOINT_INFO["endpoints"]),
)
futures.append(future)
for future in tqdm.tqdm(
concurrent.futures.as_completed(futures), total=len(futures)
):
future.result()
if args.convert_to_json:
temp = pd.read_json(args.output_file, lines=True)
temp.to_json(
args.output_file[:-1], orient="records", indent=4, force_ascii=False
)