melt / fastchat /serve /monitor /clean_battle_data.py
martinakaduc's picture
Upload folder using huggingface_hub
f3305db verified
"""
Clean chatbot arena battle log.
Usage:
python3 clean_battle_data.py --mode conv_release
"""
import argparse
import datetime
import json
import os
from pytz import timezone
import time
from tqdm import tqdm
from multiprocessing import Pool
import tiktoken
from collections import Counter
import shortuuid
from fastchat.serve.monitor.basic_stats import get_log_files, NUM_SERVERS
from fastchat.utils import detect_language
VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"]
IDENTITY_WORDS = [
"vicuna",
"lmsys",
"koala",
"uc berkeley",
"open assistant",
"laion",
"chatglm",
"chatgpt",
"gpt-4",
"openai",
"anthropic",
"claude",
"bard",
"palm",
"lamda",
"google",
"gemini",
"llama",
"qianwan",
"qwen",
"alibaba",
"mistral",
"zhipu",
"KEG lab",
"01.AI",
"AI2",
"Tülu",
"Tulu",
"deepseek",
"hermes",
"cohere",
"DBRX",
"databricks",
]
ERROR_WORDS = [
"NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.",
"$MODERATION$ YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES.",
"API REQUEST ERROR. Please increase the number of max tokens.",
"**API REQUEST ERROR** Reason: The response was blocked.",
"**API REQUEST ERROR**",
]
UNFINISHED_WORDS = [
"▌",
'<span class="cursor">',
]
for i in range(len(IDENTITY_WORDS)):
IDENTITY_WORDS[i] = IDENTITY_WORDS[i].lower()
for i in range(len(ERROR_WORDS)):
ERROR_WORDS[i] = ERROR_WORDS[i].lower()
def remove_html(raw):
if isinstance(raw, str) and raw.startswith("<h3>"):
return raw[raw.find(": ") + 2 : -len("</h3>\n")]
return raw
def to_openai_format(messages):
roles = ["user", "assistant"]
ret = []
for i, x in enumerate(messages):
ret.append({"role": roles[i % 2], "content": x[1]})
return ret
def replace_model_name(old_name, tstamp):
replace_dict = {
"bard": "palm-2",
"claude-v1": "claude-1",
"claude-instant-v1": "claude-instant-1",
"oasst-sft-1-pythia-12b": "oasst-pythia-12b",
"claude-2": "claude-2.0",
"StripedHyena-Nous-7B": "stripedhyena-nous-7b",
"gpt-4-turbo": "gpt-4-1106-preview",
"gpt-4-0125-assistants-api": "gpt-4-turbo-browsing",
}
if old_name in ["gpt-4", "gpt-3.5-turbo"]:
if tstamp > 1687849200:
return old_name + "-0613"
else:
return old_name + "-0314"
if old_name in replace_dict:
return replace_dict[old_name]
return old_name
def read_file(filename):
data = []
for retry in range(5):
try:
# lines = open(filename).readlines()
for l in open(filename):
row = json.loads(l)
if row["type"] in VOTES:
data.append(row)
break
except FileNotFoundError:
time.sleep(2)
return data
def read_file_parallel(log_files, num_threads=16):
data_all = []
with Pool(num_threads) as p:
ret_all = list(tqdm(p.imap(read_file, log_files), total=len(log_files)))
for ret in ret_all:
data_all.extend(ret)
return data_all
def process_data(
data,
exclude_model_names,
sanitize_ip,
ban_ip_list,
):
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
convert_type = {
"leftvote": "model_a",
"rightvote": "model_b",
"tievote": "tie",
"bothbad_vote": "tie (bothbad)",
}
all_ips = dict()
count_dict = {
"anony": 0,
"invalid": 0,
"leaked_identity": 0,
"banned": 0,
"error": 0,
"unfinished": 0,
"none_msg": 0,
"exclude_model": 0,
}
count_leak = {}
battles = []
for row in data:
flag_anony = False
flag_leaked_identity = False
flag_error = False
flag_unfinished = False
flag_none_msg = False
if row["models"][0] is None or row["models"][1] is None:
continue
# Resolve model names
models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])]
if "model_name" in row["states"][0]:
models_hidden = [
row["states"][0]["model_name"],
row["states"][1]["model_name"],
]
if models_hidden[0] is None:
models_hidden = models_public
else:
models_hidden = models_public
if (models_public[0] == "" and models_public[1] != "") or (
models_public[1] == "" and models_public[0] != ""
):
count_dict["invalid"] += 1
continue
if models_public[0] == "" or models_public[0] == "Model A":
flag_anony = True
models = models_hidden
else:
flag_anony = False
models = models_public
if (
models_hidden[0] not in models_public[0]
or models_hidden[1] not in models_public[1]
):
count_dict["invalid"] += 1
continue
# Detect langauge
state = row["states"][0]
if state["offset"] >= len(state["messages"]):
count_dict["invalid"] += 1
continue
lang_code = detect_language(state["messages"][state["offset"]][1])
# Drop conversations if the model names are leaked
messages = ""
for i in range(2):
state = row["states"][i]
for _, (role, msg) in enumerate(state["messages"][state["offset"] :]):
if msg:
messages += msg.lower()
else:
flag_none_msg = True
for word in IDENTITY_WORDS:
if word in messages:
if word not in count_leak:
count_leak[word] = 0
count_leak[word] += 1
flag_leaked_identity = True
break
for word in ERROR_WORDS:
if word in messages:
flag_error = True
break
for word in UNFINISHED_WORDS:
if word in messages:
flag_unfinished = True
break
if flag_none_msg:
count_dict["none_msg"] += 1
continue
if flag_leaked_identity:
count_dict["leaked_identity"] += 1
continue
if flag_error:
count_dict["error"] += 1
continue
if flag_unfinished:
count_dict["unfinished"] += 1
continue
# Replace bard with palm
models = [replace_model_name(m, row["tstamp"]) for m in models]
# Exclude certain models
if exclude_model_names and any(x in exclude_model_names for x in models):
count_dict["exclude_model"] += 1
continue
question_id = row["states"][0]["conv_id"]
conversation_a = to_openai_format(
row["states"][0]["messages"][row["states"][0]["offset"] :]
)
conversation_b = to_openai_format(
row["states"][1]["messages"][row["states"][1]["offset"] :]
)
ip = row["ip"]
if ip not in all_ips:
all_ips[ip] = {"ip": ip, "count": 0, "sanitized_id": shortuuid.uuid()}
all_ips[ip]["count"] += 1
if sanitize_ip:
user_id = f"{all_ips[ip]['sanitized_id']}"
else:
user_id = f"{all_ips[ip]['ip']}"
if ban_ip_list is not None and ip in ban_ip_list:
count_dict["banned"] += 1
continue
if flag_anony:
count_dict["anony"] += 1
for conv in conversation_a:
conv["num_tokens"] = len(
encoding.encode(conv["content"], allowed_special="all")
)
for conv in conversation_b:
conv["num_tokens"] = len(
encoding.encode(conv["content"], allowed_special="all")
)
# Save the results
battles.append(
dict(
question_id=question_id,
model_a=models[0],
model_b=models[1],
winner=convert_type[row["type"]],
judge=f"arena_user_{user_id}",
conversation_a=conversation_a,
conversation_b=conversation_b,
turn=len(conversation_a) // 2,
anony=flag_anony,
language=lang_code,
tstamp=row["tstamp"],
)
)
return battles, count_dict, count_leak, all_ips
def clean_battle_data(
log_files,
exclude_model_names,
ban_ip_list=None,
sanitize_ip=False,
anony_only=False,
num_threads=16,
):
data = read_file_parallel(log_files, num_threads=16)
battles = []
count_dict = {}
count_leak = {}
all_ips = {}
with Pool(num_threads) as p:
# split data into chunks
chunk_size = len(data) // min(100, len(data))
data_chunks = [
data[i : i + chunk_size] for i in range(0, len(data), chunk_size)
]
args_list = [
(data_chunk, exclude_model_names, sanitize_ip, ban_ip_list)
for data_chunk in data_chunks
]
ret_all = list(tqdm(p.starmap(process_data, args_list), total=len(data_chunks)))
for ret in ret_all:
sub_battles, sub_count_dict, sub_count_leak, sub_all_ips = ret
battles.extend(sub_battles)
count_dict = dict(Counter(count_dict) + Counter(sub_count_dict))
count_leak = dict(Counter(count_leak) + Counter(sub_count_leak))
for ip in sub_all_ips:
if ip not in all_ips:
all_ips[ip] = sub_all_ips[ip]
else:
all_ips[ip]["count"] += sub_all_ips[ip]["count"]
battles.sort(key=lambda x: x["tstamp"])
last_updated_tstamp = battles[-1]["tstamp"]
last_updated_datetime = datetime.datetime.fromtimestamp(
last_updated_tstamp, tz=timezone("US/Pacific")
).strftime("%Y-%m-%d %H:%M:%S %Z")
print(f"#votes: {len(data)}")
print(count_dict)
print(f"#battles: {len(battles)}, #anony: {count_dict['anony']}")
print(f"last-updated: {last_updated_datetime}")
print(f"leaked_identity: {count_leak}")
if ban_ip_list is not None:
for ban_ip in ban_ip_list:
if ban_ip in all_ips:
del all_ips[ban_ip]
print("Top 30 IPs:")
print(sorted(all_ips.values(), key=lambda x: x["count"], reverse=True)[:30])
return battles
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--max-num-files", type=int)
parser.add_argument(
"--mode", type=str, choices=["simple", "conv_release"], default="simple"
)
parser.add_argument("--exclude-model-names", type=str, nargs="+")
parser.add_argument("--ban-ip-file", type=str)
parser.add_argument("--sanitize-ip", action="store_true", default=False)
args = parser.parse_args()
log_files = get_log_files(args.max_num_files)
ban_ip_list = json.load(open(args.ban_ip_file)) if args.ban_ip_file else None
battles = clean_battle_data(
log_files, args.exclude_model_names or [], ban_ip_list, args.sanitize_ip
)
last_updated_tstamp = battles[-1]["tstamp"]
cutoff_date = datetime.datetime.fromtimestamp(
last_updated_tstamp, tz=timezone("US/Pacific")
).strftime("%Y%m%d")
if args.mode == "simple":
for x in battles:
for key in [
"conversation_a",
"conversation_b",
"question_id",
]:
del x[key]
print("Samples:")
for i in range(4):
print(battles[i])
output = f"clean_battle_{cutoff_date}.json"
elif args.mode == "conv_release":
new_battles = []
for x in battles:
if not x["anony"]:
continue
for key in []:
del x[key]
new_battles.append(x)
battles = new_battles
output = f"clean_battle_conv_{cutoff_date}.json"
with open(output, "w", encoding="utf-8", errors="replace") as fout:
json.dump(battles, fout, indent=2, ensure_ascii=False)
print(f"Write cleaned data to {output}")