melt / fastchat /serve /gradio_block_arena_vision.py
martinakaduc's picture
Upload folder using huggingface_hub
f3305db verified
"""
The gradio demo server for chatting with a large multimodal model.
Usage:
python3 -m fastchat.serve.controller
python3 -m fastchat.serve.sglang_worker --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf
python3 -m fastchat.serve.gradio_web_server_multi --share --vision-arena
"""
import json
import os
import time
import gradio as gr
from gradio.data_classes import FileData
import numpy as np
from fastchat.constants import (
TEXT_MODERATION_MSG,
IMAGE_MODERATION_MSG,
MODERATION_MSG,
CONVERSATION_LIMIT_MSG,
INPUT_CHAR_LEN_LIMIT,
CONVERSATION_TURN_LIMIT,
SURVEY_LINK,
)
from fastchat.model.model_adapter import (
get_conversation_template,
)
from fastchat.serve.gradio_web_server import (
get_model_description_md,
acknowledgment_md,
bot_response,
get_ip,
disable_btn,
State,
get_conv_log_filename,
get_remote_logger,
)
from fastchat.serve.vision.image import ImageFormat, Image
from fastchat.utils import (
build_logger,
moderation_filter,
image_moderation_filter,
)
logger = build_logger("gradio_web_server", "gradio_web_server.log")
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True, visible=True)
disable_btn = gr.Button(interactive=False)
invisible_btn = gr.Button(interactive=False, visible=False)
visible_image_column = gr.Image(visible=True)
invisible_image_column = gr.Image(visible=False)
enable_multimodal = gr.MultimodalTextbox(
interactive=True, visible=True, placeholder="Enter your prompt or add image here"
)
invisible_text = gr.Textbox(visible=False, value="", interactive=False)
visible_text = gr.Textbox(
visible=True,
value="",
interactive=True,
placeholder="πŸ‘‰ Enter your prompt and press ENTER",
)
disable_multimodal = gr.MultimodalTextbox(visible=False, value=None, interactive=False)
def get_vqa_sample():
random_sample = np.random.choice(vqa_samples)
question, path = random_sample["question"], random_sample["path"]
res = {"text": "", "files": [path]}
return (res, path)
def set_visible_image(textbox):
images = textbox["files"]
if len(images) == 0:
return invisible_image_column
elif len(images) > 1:
gr.Warning(
"We only support single image conversations. Please start a new round if you would like to chat using this image."
)
return visible_image_column
def set_invisible_image():
return invisible_image_column
def add_image(textbox):
images = textbox["files"]
if len(images) == 0:
return None
return images[0]
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
filename = get_conv_log_filename(state.is_vision, state.has_csam_image)
with open(filename, "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"model": model_selector,
"state": state.dict(),
"ip": get_ip(request),
}
fout.write(json.dumps(data) + "\n")
get_remote_logger().log(data)
def upvote_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"upvote. ip: {ip}")
vote_last_response(state, "upvote", model_selector, request)
return (None,) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"downvote. ip: {ip}")
vote_last_response(state, "downvote", model_selector, request)
return (None,) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"flag. ip: {ip}")
vote_last_response(state, "flag", model_selector, request)
return (None,) + (disable_btn,) * 3
def regenerate(state, request: gr.Request):
ip = get_ip(request)
logger.info(f"regenerate. ip: {ip}")
if not state.regen_support:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
state.conv.update_last_message(None)
return (state, state.to_gradio_chatbot(), None) + (disable_btn,) * 5
def clear_history(request: gr.Request):
ip = get_ip(request)
logger.info(f"clear_history. ip: {ip}")
state = None
return (state, [], None) + (disable_btn,) * 5
def clear_history_example(request: gr.Request):
ip = get_ip(request)
logger.info(f"clear_history_example. ip: {ip}")
state = None
return (state, [], enable_multimodal) + (disable_btn,) * 5
# TODO(Chris): At some point, we would like this to be a live-reporting feature.
def report_csam_image(state, image):
pass
def _prepare_text_with_image(state, text, images, csam_flag):
if len(images) > 0:
if len(state.conv.get_images()) > 0:
# reset convo with new image
state.conv = get_conversation_template(state.model_name)
text = text, [images[0]]
return text
# NOTE(chris): take multiple images later on
def convert_images_to_conversation_format(images):
import base64
MAX_NSFW_ENDPOINT_IMAGE_SIZE_IN_MB = 5 / 1.5
conv_images = []
if len(images) > 0:
conv_image = Image(url=images[0])
conv_image.to_conversation_format(MAX_NSFW_ENDPOINT_IMAGE_SIZE_IN_MB)
conv_images.append(conv_image)
return conv_images
def moderate_input(state, text, all_conv_text, model_list, images, ip):
text_flagged = moderation_filter(all_conv_text, model_list)
# flagged = moderation_filter(text, [state.model_name])
nsfw_flagged, csam_flagged = False, False
if len(images) > 0:
nsfw_flagged, csam_flagged = image_moderation_filter(images[0])
image_flagged = nsfw_flagged or csam_flagged
if text_flagged or image_flagged:
logger.info(f"violate moderation. ip: {ip}. text: {all_conv_text}")
if text_flagged and not image_flagged:
# overwrite the original text
text = TEXT_MODERATION_MSG
elif not text_flagged and image_flagged:
text = IMAGE_MODERATION_MSG
elif text_flagged and image_flagged:
text = MODERATION_MSG
if csam_flagged:
state.has_csam_image = True
report_csam_image(state, images[0])
return text, image_flagged, csam_flagged
def add_text(state, model_selector, chat_input, request: gr.Request):
text, images = chat_input["text"], chat_input["files"]
ip = get_ip(request)
logger.info(f"add_text. ip: {ip}. len: {len(text)}")
if state is None:
state = State(model_selector, is_vision=True)
if len(text) <= 0:
state.skip_next = True
return (state, state.to_gradio_chatbot(), None) + (no_change_btn,) * 5
all_conv_text = state.conv.get_prompt()
all_conv_text = all_conv_text[-2000:] + "\nuser: " + text
images = convert_images_to_conversation_format(images)
text, image_flagged, csam_flag = moderate_input(
state, text, all_conv_text, [state.model_name], images, ip
)
if image_flagged:
logger.info(f"image flagged. ip: {ip}. text: {text}")
state.skip_next = True
return (state, state.to_gradio_chatbot(), {"text": IMAGE_MODERATION_MSG}) + (
no_change_btn,
) * 5
if (len(state.conv.messages) - state.conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
logger.info(f"conversation turn limit. ip: {ip}. text: {text}")
state.skip_next = True
return (state, state.to_gradio_chatbot(), {"text": CONVERSATION_LIMIT_MSG}) + (
no_change_btn,
) * 5
text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off
text = _prepare_text_with_image(state, text, images, csam_flag=csam_flag)
state.conv.append_message(state.conv.roles[0], text)
state.conv.append_message(state.conv.roles[1], None)
return (state, state.to_gradio_chatbot(), None) + (disable_btn,) * 5
def build_single_vision_language_model_ui(
models, add_promotion_links=False, random_questions=None
):
promotion = (
f"""
- [GitHub](https://github.com/lm-sys/FastChat) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx)
{SURVEY_LINK}
**❗️ For research purposes, we log user prompts and images, and may release this data to the public in the future. Please do not upload any confidential or personal information.**
Note: You can only chat with <span style='color: #DE3163; font-weight: bold'>one image per conversation</span>. You can upload images less than 15MB. Click the "Random Example" button to chat with a random image."""
if add_promotion_links
else ""
)
notice_markdown = f"""
# πŸ”οΈ Chat with Large Vision-Language Models
{promotion}
"""
state = gr.State()
gr.Markdown(notice_markdown, elem_id="notice_markdown")
with gr.Group():
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False,
)
with gr.Accordion(
f"πŸ” Expand to see the descriptions of {len(models)} models", open=False
):
model_description_md = get_model_description_md(models)
gr.Markdown(model_description_md, elem_id="model_description_markdown")
with gr.Row():
textbox = gr.MultimodalTextbox(
file_types=["image"],
show_label=False,
placeholder="Enter your prompt or add image here",
container=True,
render=False,
elem_id="input_box",
)
with gr.Column(scale=2, visible=False) as image_column:
imagebox = gr.Image(
type="pil",
show_label=False,
interactive=False,
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot", label="Scroll down and start chatting", height=650
)
with gr.Row():
textbox.render()
# with gr.Column(scale=1, min_width=50):
# send_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons"):
if random_questions:
global vqa_samples
with open(random_questions, "r") as f:
vqa_samples = json.load(f)
random_btn = gr.Button(value="🎲 Random Example", interactive=True)
upvote_btn = gr.Button(value="πŸ‘ Upvote", interactive=False)
downvote_btn = gr.Button(value="πŸ‘Ž Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
regenerate_btn = gr.Button(value="πŸ”„ Regenerate", interactive=False)
clear_btn = gr.Button(value="πŸ—‘οΈ Clear", interactive=False)
cur_dir = os.path.dirname(os.path.abspath(__file__))
examples = gr.Examples(
examples=[
{
"text": "How can I prepare a delicious meal using these ingredients?",
"files": [f"{cur_dir}/example_images/fridge.jpg"],
},
{
"text": "What might the woman on the right be thinking about?",
"files": [f"{cur_dir}/example_images/distracted.jpg"],
},
],
inputs=[textbox],
)
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=2048,
value=1024,
step=64,
interactive=True,
label="Max output tokens",
)
if add_promotion_links:
gr.Markdown(acknowledgment_md, elem_id="ack_markdown")
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
downvote_btn.click(
downvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
flag_btn.click(
flag_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
bot_response,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
model_selector.change(
clear_history, None, [state, chatbot, textbox] + btn_list
).then(set_visible_image, [textbox], [image_column])
examples.dataset.click(
clear_history_example, None, [state, chatbot, textbox] + btn_list
)
textbox.input(add_image, [textbox], [imagebox]).then(
set_visible_image, [textbox], [image_column]
).then(clear_history_example, None, [state, chatbot, textbox] + btn_list)
textbox.submit(
add_text,
[state, model_selector, textbox],
[state, chatbot, textbox] + btn_list,
).then(set_invisible_image, [], [image_column]).then(
bot_response,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
if random_questions:
random_btn.click(
get_vqa_sample, # First, get the VQA sample
[], # Pass the path to the VQA samples
[textbox, imagebox], # Outputs are textbox and imagebox
).then(set_visible_image, [textbox], [image_column]).then(
clear_history_example, None, [state, chatbot, textbox] + btn_list
)
return [state, model_selector]