Spaces:
No application file
No application file
""" | |
Split the dataset into training and test set. | |
Usage: python3 -m fastchat.data.split_train_test --in sharegpt.json | |
""" | |
import argparse | |
import json | |
import numpy as np | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--in-file", type=str, required=True) | |
parser.add_argument("--begin", type=int, default=0) | |
parser.add_argument("--end", type=int, default=100) | |
parser.add_argument("--ratio", type=float, default=0.9) | |
args = parser.parse_args() | |
content = json.load(open(args.in_file, "r")) | |
np.random.seed(0) | |
perm = np.random.permutation(len(content)) | |
content = [content[i] for i in perm] | |
split = int(args.ratio * len(content)) | |
train_set = content[:split] | |
test_set = content[split:] | |
print(f"#train: {len(train_set)}, #test: {len(test_set)}") | |
train_name = args.in_file.replace(".json", "_train.json") | |
test_name = args.in_file.replace(".json", "_test.json") | |
json.dump(train_set, open(train_name, "w"), indent=2, ensure_ascii=False) | |
json.dump(test_set, open(test_name, "w"), indent=2, ensure_ascii=False) | |