marshal007's picture
add install steps
c83c9e3
import os
import subprocess
# 安装额外的库
subprocess.run(["pip", "install", "pip", "-U"])
subprocess.run(["pip", "install", "torch==2.5.1", "torchvision==0.20.1", "torchaudio==2.5.1", "xformers==0.0.28.post3", "--index-url", "https://download.pytorch.org/whl/cu124"])
subprocess.run(["pip", "install", "torchao", "--index-url", "https://download.pytorch.org/whl/nightly/cu124"])
subprocess.run(["pip", "install", "-r", "requirements.txt"])
subprocess.run(["pip", "install", "--no-deps", "facenet_pytorch==2.6.0"])
# 设置 FFMPEG 路径
os.environ["FFMPEG_PATH"] = "/path/to/ffmpeg-4.4-amd64-static"
# 下载预训练模型
subprocess.run(["git", "lfs", "install"])
subprocess.run(["git", "clone", "https://huggingface.co/BadToBest/EchoMimicV2", "pretrained_weights"])
import random
from pathlib import Path
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_emo import EMOUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
from src.utils.util import save_videos_grid
from src.models.pose_encoder import PoseEncoder
from src.utils.dwpose_util import draw_pose_select_v2
from moviepy.editor import VideoFileClip, AudioFileClip
import gradio as gr
from datetime import datetime
from torchao.quantization import quantize_, int8_weight_only
import gc
total_vram_in_gb = torch.cuda.get_device_properties(0).total_memory / 1073741824
print(f'\033[32mCUDA版本:{torch.version.cuda}\033[0m')
print(f'\033[32mPytorch版本:{torch.__version__}\033[0m')
print(f'\033[32m显卡型号:{torch.cuda.get_device_name()}\033[0m')
print(f'\033[32m显存大小:{total_vram_in_gb:.2f}GB\033[0m')
print(f'\033[32m精度:float16\033[0m')
dtype = torch.float16
if torch.cuda.is_available():
device = "cuda"
else:
print("cuda not available, using cpu")
device = "cpu"
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
def generate(image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = Path("outputs")
save_dir.mkdir(exist_ok=True, parents=True)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained("./pretrained_weights/sd-vae-ft-mse").to(device, dtype=dtype)
if quantization_input:
quantize_(vae, int8_weight_only())
print("使用int8量化")
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained("./pretrained_weights/sd-image-variations-diffusers", subfolder="unet", use_safetensors=False).to(dtype=dtype, device=device)
reference_unet.load_state_dict(torch.load("./pretrained_weights/reference_unet.pth", weights_only=True))
if quantization_input:
quantize_(reference_unet, int8_weight_only())
## denoising net init
if os.path.exists("./pretrained_weights/motion_module.pth"):
print('using motion module')
else:
exit("motion module not found")
### stage1 + stage2
denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d(
"./pretrained_weights/sd-image-variations-diffusers",
"./pretrained_weights/motion_module.pth",
subfolder="unet",
unet_additional_kwargs = {
"use_inflated_groupnorm": True,
"unet_use_cross_frame_attention": False,
"unet_use_temporal_attention": False,
"use_motion_module": True,
"cross_attention_dim": 384,
"motion_module_resolutions": [
1,
2,
4,
8
],
"motion_module_mid_block": True ,
"motion_module_decoder_only": False,
"motion_module_type": "Vanilla",
"motion_module_kwargs":{
"num_attention_heads": 8,
"num_transformer_block": 1,
"attention_block_types": [
'Temporal_Self',
'Temporal_Self'
],
"temporal_position_encoding": True,
"temporal_position_encoding_max_len": 32,
"temporal_attention_dim_div": 1,
}
},
).to(dtype=dtype, device=device)
denoising_unet.load_state_dict(torch.load("./pretrained_weights/denoising_unet.pth", weights_only=True),strict=False)
# pose net init
pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
pose_net.load_state_dict(torch.load("./pretrained_weights/pose_encoder.pth", weights_only=True))
### load audio processor params
audio_processor = load_audio_model(model_path="./pretrained_weights/audio_processor/tiny.pt", device=device)
############# model_init finished #############
sched_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "linear",
"clip_sample": False,
"steps_offset": 1,
"prediction_type": "v_prediction",
"rescale_betas_zero_snr": True,
"timestep_spacing": "trailing"
}
scheduler = DDIMScheduler(**sched_kwargs)
pipe = EchoMimicV2Pipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
pose_encoder=pose_net,
scheduler=scheduler,
)
pipe = pipe.to(device, dtype=dtype)
if seed is not None and seed > -1:
generator = torch.manual_seed(seed)
else:
seed = random.randint(100, 1000000)
generator = torch.manual_seed(seed)
inputs_dict = {
"refimg": image_input,
"audio": audio_input,
"pose": pose_input,
}
print('Pose:', inputs_dict['pose'])
print('Reference:', inputs_dict['refimg'])
print('Audio:', inputs_dict['audio'])
save_name = f"{save_dir}/{timestamp}"
ref_image_pil = Image.open(inputs_dict['refimg']).resize((width, height))
audio_clip = AudioFileClip(inputs_dict['audio'])
length = min(length, int(audio_clip.duration * fps), len(os.listdir(inputs_dict['pose'])))
start_idx = 0
pose_list = []
for index in range(start_idx, start_idx + length):
tgt_musk = np.zeros((width, height, 3)).astype('uint8')
tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index))
detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params']
im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800)
im = np.transpose(np.array(im),(1, 2, 0))
tgt_musk[rb:re,cb:ce,:] = im
tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=dtype, device=device).permute(2,0,1) / 255.0)
poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
audio_clip = AudioFileClip(inputs_dict['audio'])
audio_clip = audio_clip.set_duration(length / fps)
video = pipe(
ref_image_pil,
inputs_dict['audio'],
poses_tensor[:,:,:length,...],
width,
height,
length,
steps,
cfg,
generator=generator,
audio_sample_rate=sample_rate,
context_frames=context_frames,
fps=fps,
context_overlap=context_overlap,
start_idx=start_idx,
).videos
final_length = min(video.shape[2], poses_tensor.shape[2], length)
video_sig = video[:, :, :final_length, :, :]
save_videos_grid(
video_sig,
save_name + "_woa_sig.mp4",
n_rows=1,
fps=fps,
)
video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",)
video_clip_sig = video_clip_sig.set_audio(audio_clip)
video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2)
video_output = save_name + "_sig.mp4"
seed_text = gr.update(visible=True, value=seed)
return video_output, seed_text
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<div>
<h2 style="font-size: 30px;text-align: center;">EchoMimicV2</h2>
</div>
<div style="text-align: center;">
<a href="https://github.com/antgroup/echomimic_v2">🌐 Github</a> |
<a href="https://arxiv.org/abs/2411.10061">📜 arXiv </a>
</div>
<div style="text-align: center; font-weight: bold; color: red;">
⚠️ 该演示仅供学术研究和体验使用。
</div>
""")
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Group():
image_input = gr.Image(label="图像输入(自动缩放)", type="filepath")
audio_input = gr.Audio(label="音频输入", type="filepath")
pose_input = gr.Textbox(label="姿态输入(目录地址)", placeholder="请输入姿态数据的目录地址", value="assets/halfbody_demo/pose/01")
with gr.Group():
with gr.Row():
width = gr.Number(label="宽度(16的倍数,推荐768)", value=768)
height = gr.Number(label="高度(16的倍数,推荐768)", value=768)
length = gr.Number(label="视频长度,推荐240)", value=240)
with gr.Row():
steps = gr.Number(label="步骤(推荐30)", value=20)
sample_rate = gr.Number(label="采样率(推荐16000)", value=16000)
cfg = gr.Number(label="cfg(推荐2.5)", value=2.5, step=0.1)
with gr.Row():
fps = gr.Number(label="帧率(推荐24)", value=24)
context_frames = gr.Number(label="上下文框架(推荐12)", value=12)
context_overlap = gr.Number(label="上下文重叠(推荐3)", value=3)
with gr.Row():
quantization_input = gr.Checkbox(label="int8量化(推荐显存12G的用户开启,并使用不超过5秒的音频)", value=False)
seed = gr.Number(label="种子(-1为随机)", value=-1)
generate_button = gr.Button("🎬 生成视频")
with gr.Column():
video_output = gr.Video(label="输出视频")
seed_text = gr.Textbox(label="种子", interactive=False, visible=False)
gr.Examples(
examples=[
["EMTD_dataset/ref_imgs_by_FLUX/man/0001.png", "assets/halfbody_demo/audio/chinese/echomimicv2_man.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0077.png", "assets/halfbody_demo/audio/chinese/echomimicv2_woman.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/0003.png", "assets/halfbody_demo/audio/chinese/fighting.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0033.png", "assets/halfbody_demo/audio/chinese/good.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/0010.png", "assets/halfbody_demo/audio/chinese/news.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/1168.png", "assets/halfbody_demo/audio/chinese/no_smoking.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0057.png", "assets/halfbody_demo/audio/chinese/ultraman.wav"]
],
inputs=[image_input, audio_input],
label="预设人物及音频",
)
generate_button.click(
generate,
inputs=[image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed],
outputs=[video_output, seed_text],
)
if __name__ == "__main__":
demo.queue()
demo.launch(inbrowser=True)