Spaces:
Configuration error
Configuration error
# Copyright 2023 Natural Synthetics Inc. All rights reserved. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
import torch | |
import torch.nn as nn | |
from diffusers.models.resnet import Upsample2D, Downsample2D, LoRACompatibleConv | |
from einops import rearrange | |
class Upsample3D(Upsample2D): | |
def forward(self, hidden_states, output_size=None, scale: float = 1.0): | |
f = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
hidden_states = super(Upsample3D, self).forward(hidden_states, output_size, scale) | |
return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) | |
class Downsample3D(Downsample2D): | |
def forward(self, hidden_states, scale: float = 1.0): | |
f = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
hidden_states = super(Downsample3D, self).forward(hidden_states, scale) | |
return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) | |
class Conv3d(LoRACompatibleConv): | |
def forward(self, hidden_states, scale: float = 1.0): | |
f = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
hidden_states = super().forward(hidden_states, scale) | |
return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) | |
class ResnetBlock3D(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout=0.0, | |
temb_channels=512, | |
groups=32, | |
groups_out=None, | |
pre_norm=True, | |
eps=1e-6, | |
non_linearity="silu", | |
time_embedding_norm="default", | |
output_scale_factor=1.0, | |
use_in_shortcut=None, | |
conv_shortcut_bias: bool = True, | |
): | |
super().__init__() | |
self.pre_norm = pre_norm | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.time_embedding_norm = time_embedding_norm | |
self.output_scale_factor = output_scale_factor | |
if groups_out is None: | |
groups_out = groups | |
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
self.conv1 = Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if temb_channels is not None: | |
if self.time_embedding_norm == "default": | |
time_emb_proj_out_channels = out_channels | |
elif self.time_embedding_norm == "scale_shift": | |
time_emb_proj_out_channels = out_channels * 2 | |
else: | |
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") | |
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) | |
else: | |
self.time_emb_proj = None | |
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = Conv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
assert non_linearity == "silu" | |
self.nonlinearity = nn.SiLU() | |
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = Conv3d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias | |
) | |
def forward(self, input_tensor, temb): | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if temb is not None: | |
temb = self.nonlinearity(temb) | |
temb = self.time_emb_proj(temb)[:, :, None, None, None] | |
if temb is not None and self.time_embedding_norm == "default": | |
hidden_states = hidden_states + temb | |
hidden_states = self.norm2(hidden_states) | |
if temb is not None and self.time_embedding_norm == "scale_shift": | |
scale, shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |