Spaces:
Runtime error
Runtime error
| import inspect | |
| import re | |
| from typing import Callable, List, Optional, Union | |
| import numpy as np | |
| import PIL | |
| import torch | |
| from packaging import version | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
| import diffusers | |
| from diffusers import SchedulerMixin, StableDiffusionPipeline | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker | |
| from diffusers.utils import logging | |
| try: | |
| from diffusers.utils import PIL_INTERPOLATION | |
| except ImportError: | |
| if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): | |
| PIL_INTERPOLATION = { | |
| "linear": PIL.Image.Resampling.BILINEAR, | |
| "bilinear": PIL.Image.Resampling.BILINEAR, | |
| "bicubic": PIL.Image.Resampling.BICUBIC, | |
| "lanczos": PIL.Image.Resampling.LANCZOS, | |
| "nearest": PIL.Image.Resampling.NEAREST, | |
| } | |
| else: | |
| PIL_INTERPOLATION = { | |
| "linear": PIL.Image.LINEAR, | |
| "bilinear": PIL.Image.BILINEAR, | |
| "bicubic": PIL.Image.BICUBIC, | |
| "lanczos": PIL.Image.LANCZOS, | |
| "nearest": PIL.Image.NEAREST, | |
| } | |
| # ------------------------------------------------------------------------------ | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| re_attention = re.compile( | |
| r""" | |
| \\\(| | |
| \\\)| | |
| \\\[| | |
| \\]| | |
| \\\\| | |
| \\| | |
| \(| | |
| \[| | |
| :([+-]?[.\d]+)\)| | |
| \)| | |
| ]| | |
| [^\\()\[\]:]+| | |
| : | |
| """, | |
| re.X, | |
| ) | |
| def parse_prompt_attention(text): | |
| """ | |
| Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | |
| Accepted tokens are: | |
| (abc) - increases attention to abc by a multiplier of 1.1 | |
| (abc:3.12) - increases attention to abc by a multiplier of 3.12 | |
| [abc] - decreases attention to abc by a multiplier of 1.1 | |
| \( - literal character '(' | |
| \[ - literal character '[' | |
| \) - literal character ')' | |
| \] - literal character ']' | |
| \\ - literal character '\' | |
| anything else - just text | |
| >>> parse_prompt_attention('normal text') | |
| [['normal text', 1.0]] | |
| >>> parse_prompt_attention('an (important) word') | |
| [['an ', 1.0], ['important', 1.1], [' word', 1.0]] | |
| >>> parse_prompt_attention('(unbalanced') | |
| [['unbalanced', 1.1]] | |
| >>> parse_prompt_attention('\(literal\]') | |
| [['(literal]', 1.0]] | |
| >>> parse_prompt_attention('(unnecessary)(parens)') | |
| [['unnecessaryparens', 1.1]] | |
| >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') | |
| [['a ', 1.0], | |
| ['house', 1.5730000000000004], | |
| [' ', 1.1], | |
| ['on', 1.0], | |
| [' a ', 1.1], | |
| ['hill', 0.55], | |
| [', sun, ', 1.1], | |
| ['sky', 1.4641000000000006], | |
| ['.', 1.1]] | |
| """ | |
| res = [] | |
| round_brackets = [] | |
| square_brackets = [] | |
| round_bracket_multiplier = 1.1 | |
| square_bracket_multiplier = 1 / 1.1 | |
| def multiply_range(start_position, multiplier): | |
| for p in range(start_position, len(res)): | |
| res[p][1] *= multiplier | |
| for m in re_attention.finditer(text): | |
| text = m.group(0) | |
| weight = m.group(1) | |
| if text.startswith("\\"): | |
| res.append([text[1:], 1.0]) | |
| elif text == "(": | |
| round_brackets.append(len(res)) | |
| elif text == "[": | |
| square_brackets.append(len(res)) | |
| elif weight is not None and len(round_brackets) > 0: | |
| multiply_range(round_brackets.pop(), float(weight)) | |
| elif text == ")" and len(round_brackets) > 0: | |
| multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
| elif text == "]" and len(square_brackets) > 0: | |
| multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
| else: | |
| res.append([text, 1.0]) | |
| for pos in round_brackets: | |
| multiply_range(pos, round_bracket_multiplier) | |
| for pos in square_brackets: | |
| multiply_range(pos, square_bracket_multiplier) | |
| if len(res) == 0: | |
| res = [["", 1.0]] | |
| # merge runs of identical weights | |
| i = 0 | |
| while i + 1 < len(res): | |
| if res[i][1] == res[i + 1][1]: | |
| res[i][0] += res[i + 1][0] | |
| res.pop(i + 1) | |
| else: | |
| i += 1 | |
| return res | |
| def get_prompts_with_weights(pipe: StableDiffusionPipeline, prompt: List[str], max_length: int): | |
| r""" | |
| Tokenize a list of prompts and return its tokens with weights of each token. | |
| No padding, starting or ending token is included. | |
| """ | |
| tokens = [] | |
| weights = [] | |
| truncated = False | |
| for text in prompt: | |
| texts_and_weights = parse_prompt_attention(text) | |
| text_token = [] | |
| text_weight = [] | |
| for word, weight in texts_and_weights: | |
| # tokenize and discard the starting and the ending token | |
| token = pipe.tokenizer(word).input_ids[1:-1] | |
| text_token += token | |
| # copy the weight by length of token | |
| text_weight += [weight] * len(token) | |
| # stop if the text is too long (longer than truncation limit) | |
| if len(text_token) > max_length: | |
| truncated = True | |
| break | |
| # truncate | |
| if len(text_token) > max_length: | |
| truncated = True | |
| text_token = text_token[:max_length] | |
| text_weight = text_weight[:max_length] | |
| tokens.append(text_token) | |
| weights.append(text_weight) | |
| if truncated: | |
| logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples") | |
| return tokens, weights | |
| def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77): | |
| r""" | |
| Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length. | |
| """ | |
| max_embeddings_multiples = (max_length - 2) // (chunk_length - 2) | |
| weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length | |
| for i in range(len(tokens)): | |
| tokens[i] = [bos] + tokens[i] + [pad] * (max_length - 1 - len(tokens[i]) - 1) + [eos] | |
| if no_boseos_middle: | |
| weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i])) | |
| else: | |
| w = [] | |
| if len(weights[i]) == 0: | |
| w = [1.0] * weights_length | |
| else: | |
| for j in range(max_embeddings_multiples): | |
| w.append(1.0) # weight for starting token in this chunk | |
| w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))] | |
| w.append(1.0) # weight for ending token in this chunk | |
| w += [1.0] * (weights_length - len(w)) | |
| weights[i] = w[:] | |
| return tokens, weights | |
| def get_unweighted_text_embeddings( | |
| pipe: StableDiffusionPipeline, | |
| text_input: torch.Tensor, | |
| chunk_length: int, | |
| no_boseos_middle: Optional[bool] = True, | |
| ): | |
| """ | |
| When the length of tokens is a multiple of the capacity of the text encoder, | |
| it should be split into chunks and sent to the text encoder individually. | |
| """ | |
| max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2) | |
| if max_embeddings_multiples > 1: | |
| text_embeddings = [] | |
| for i in range(max_embeddings_multiples): | |
| # extract the i-th chunk | |
| text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone() | |
| # cover the head and the tail by the starting and the ending tokens | |
| text_input_chunk[:, 0] = text_input[0, 0] | |
| text_input_chunk[:, -1] = text_input[0, -1] | |
| text_embedding = pipe.text_encoder(text_input_chunk)[0] | |
| if no_boseos_middle: | |
| if i == 0: | |
| # discard the ending token | |
| text_embedding = text_embedding[:, :-1] | |
| elif i == max_embeddings_multiples - 1: | |
| # discard the starting token | |
| text_embedding = text_embedding[:, 1:] | |
| else: | |
| # discard both starting and ending tokens | |
| text_embedding = text_embedding[:, 1:-1] | |
| text_embeddings.append(text_embedding) | |
| text_embeddings = torch.concat(text_embeddings, axis=1) | |
| else: | |
| text_embeddings = pipe.text_encoder(text_input)[0] | |
| return text_embeddings | |
| def get_weighted_text_embeddings( | |
| pipe: StableDiffusionPipeline, | |
| prompt: Union[str, List[str]], | |
| uncond_prompt: Optional[Union[str, List[str]]] = None, | |
| max_embeddings_multiples: Optional[int] = 3, | |
| no_boseos_middle: Optional[bool] = False, | |
| skip_parsing: Optional[bool] = False, | |
| skip_weighting: Optional[bool] = False, | |
| ): | |
| r""" | |
| Prompts can be assigned with local weights using brackets. For example, | |
| prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful', | |
| and the embedding tokens corresponding to the words get multiplied by a constant, 1.1. | |
| Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean. | |
| Args: | |
| pipe (`StableDiffusionPipeline`): | |
| Pipe to provide access to the tokenizer and the text encoder. | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| uncond_prompt (`str` or `List[str]`): | |
| The unconditional prompt or prompts for guide the image generation. If unconditional prompt | |
| is provided, the embeddings of prompt and uncond_prompt are concatenated. | |
| max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
| The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
| no_boseos_middle (`bool`, *optional*, defaults to `False`): | |
| If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and | |
| ending token in each of the chunk in the middle. | |
| skip_parsing (`bool`, *optional*, defaults to `False`): | |
| Skip the parsing of brackets. | |
| skip_weighting (`bool`, *optional*, defaults to `False`): | |
| Skip the weighting. When the parsing is skipped, it is forced True. | |
| """ | |
| max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 | |
| if isinstance(prompt, str): | |
| prompt = [prompt] | |
| if not skip_parsing: | |
| prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2) | |
| if uncond_prompt is not None: | |
| if isinstance(uncond_prompt, str): | |
| uncond_prompt = [uncond_prompt] | |
| uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2) | |
| else: | |
| prompt_tokens = [ | |
| token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids | |
| ] | |
| prompt_weights = [[1.0] * len(token) for token in prompt_tokens] | |
| if uncond_prompt is not None: | |
| if isinstance(uncond_prompt, str): | |
| uncond_prompt = [uncond_prompt] | |
| uncond_tokens = [ | |
| token[1:-1] | |
| for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids | |
| ] | |
| uncond_weights = [[1.0] * len(token) for token in uncond_tokens] | |
| # round up the longest length of tokens to a multiple of (model_max_length - 2) | |
| max_length = max([len(token) for token in prompt_tokens]) | |
| if uncond_prompt is not None: | |
| max_length = max(max_length, max([len(token) for token in uncond_tokens])) | |
| max_embeddings_multiples = min( | |
| max_embeddings_multiples, | |
| (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1, | |
| ) | |
| max_embeddings_multiples = max(1, max_embeddings_multiples) | |
| max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 | |
| # pad the length of tokens and weights | |
| bos = pipe.tokenizer.bos_token_id | |
| eos = pipe.tokenizer.eos_token_id | |
| pad = getattr(pipe.tokenizer, "pad_token_id", eos) | |
| prompt_tokens, prompt_weights = pad_tokens_and_weights( | |
| prompt_tokens, | |
| prompt_weights, | |
| max_length, | |
| bos, | |
| eos, | |
| pad, | |
| no_boseos_middle=no_boseos_middle, | |
| chunk_length=pipe.tokenizer.model_max_length, | |
| ) | |
| prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device) | |
| if uncond_prompt is not None: | |
| uncond_tokens, uncond_weights = pad_tokens_and_weights( | |
| uncond_tokens, | |
| uncond_weights, | |
| max_length, | |
| bos, | |
| eos, | |
| pad, | |
| no_boseos_middle=no_boseos_middle, | |
| chunk_length=pipe.tokenizer.model_max_length, | |
| ) | |
| uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device) | |
| # get the embeddings | |
| text_embeddings = get_unweighted_text_embeddings( | |
| pipe, | |
| prompt_tokens, | |
| pipe.tokenizer.model_max_length, | |
| no_boseos_middle=no_boseos_middle, | |
| ) | |
| prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device) | |
| if uncond_prompt is not None: | |
| uncond_embeddings = get_unweighted_text_embeddings( | |
| pipe, | |
| uncond_tokens, | |
| pipe.tokenizer.model_max_length, | |
| no_boseos_middle=no_boseos_middle, | |
| ) | |
| uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device) | |
| # assign weights to the prompts and normalize in the sense of mean | |
| # TODO: should we normalize by chunk or in a whole (current implementation)? | |
| if (not skip_parsing) and (not skip_weighting): | |
| previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype) | |
| text_embeddings *= prompt_weights.unsqueeze(-1) | |
| current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype) | |
| text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1) | |
| if uncond_prompt is not None: | |
| previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype) | |
| uncond_embeddings *= uncond_weights.unsqueeze(-1) | |
| current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype) | |
| uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1) | |
| if uncond_prompt is not None: | |
| return text_embeddings, uncond_embeddings | |
| return text_embeddings, None | |
| def preprocess_image(image): | |
| w, h = image.size | |
| w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 | |
| image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image[None].transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| return 2.0 * image - 1.0 | |
| def preprocess_mask(mask, scale_factor=8): | |
| mask = mask.convert("L") | |
| w, h = mask.size | |
| w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 | |
| mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"]) | |
| mask = np.array(mask).astype(np.float32) / 255.0 | |
| mask = np.tile(mask, (4, 1, 1)) | |
| mask = mask[None].transpose(0, 1, 2, 3) # what does this step do? | |
| mask = 1 - mask # repaint white, keep black | |
| mask = torch.from_numpy(mask) | |
| return mask | |
| class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing | |
| weighting in prompt. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. | |
| feature_extractor ([`CLIPImageProcessor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| """ | |
| if version.parse(version.parse(diffusers.__version__).base_version) >= version.parse("0.9.0"): | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: SchedulerMixin, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| requires_safety_checker=requires_safety_checker, | |
| ) | |
| self.__init__additional__() | |
| else: | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: SchedulerMixin, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| ): | |
| super().__init__( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.__init__additional__() | |
| def __init__additional__(self): | |
| if not hasattr(self, "vae_scale_factor"): | |
| setattr(self, "vae_scale_factor", 2 ** (len(self.vae.config.block_out_channels) - 1)) | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| max_embeddings_multiples, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `list(int)`): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
| The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
| """ | |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
| if negative_prompt is None: | |
| negative_prompt = [""] * batch_size | |
| elif isinstance(negative_prompt, str): | |
| negative_prompt = [negative_prompt] * batch_size | |
| if batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| text_embeddings, uncond_embeddings = get_weighted_text_embeddings( | |
| pipe=self, | |
| prompt=prompt, | |
| uncond_prompt=negative_prompt if do_classifier_free_guidance else None, | |
| max_embeddings_multiples=max_embeddings_multiples, | |
| ) | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) | |
| text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| bs_embed, seq_len, _ = uncond_embeddings.shape | |
| uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) | |
| uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def check_inputs(self, prompt, height, width, strength, callback_steps): | |
| if not isinstance(prompt, str) and not isinstance(prompt, list): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if strength < 0 or strength > 1: | |
| raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def get_timesteps(self, num_inference_steps, strength, device, is_text2img): | |
| if is_text2img: | |
| return self.scheduler.timesteps.to(device), num_inference_steps | |
| else: | |
| # get the original timestep using init_timestep | |
| offset = self.scheduler.config.get("steps_offset", 0) | |
| init_timestep = int(num_inference_steps * strength) + offset | |
| init_timestep = min(init_timestep, num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep + offset, 0) | |
| timesteps = self.scheduler.timesteps[t_start:].to(device) | |
| return timesteps, num_inference_steps - t_start | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is not None: | |
| safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| else: | |
| has_nsfw_concept = None | |
| return image, has_nsfw_concept | |
| def decode_latents(self, latents): | |
| latents = 1 / 0.18215 * latents | |
| image = self.vae.decode(latents).sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def prepare_latents(self, image, timestep, batch_size, height, width, dtype, device, generator, latents=None): | |
| if image is None: | |
| shape = ( | |
| batch_size, | |
| self.unet.in_channels, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if latents is None: | |
| if device.type == "mps": | |
| # randn does not work reproducibly on mps | |
| latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device) | |
| else: | |
| latents = torch.randn(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents, None, None | |
| else: | |
| init_latent_dist = self.vae.encode(image).latent_dist | |
| init_latents = init_latent_dist.sample(generator=generator) | |
| init_latents = 0.18215 * init_latents | |
| init_latents = torch.cat([init_latents] * batch_size, dim=0) | |
| init_latents_orig = init_latents | |
| shape = init_latents.shape | |
| # add noise to latents using the timesteps | |
| if device.type == "mps": | |
| noise = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device) | |
| else: | |
| noise = torch.randn(shape, generator=generator, device=device, dtype=dtype) | |
| latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
| return latents, init_latents_orig, noise | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
| mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
| height: int = 512, | |
| width: int = 512, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| strength: float = 0.8, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[torch.Generator] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| max_embeddings_multiples: Optional[int] = 3, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| is_cancelled_callback: Optional[Callable[[], bool]] = None, | |
| callback_steps: int = 1, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| image (`torch.FloatTensor` or `PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch, that will be used as the starting point for the | |
| process. | |
| mask_image (`torch.FloatTensor` or `PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be | |
| replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a | |
| PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should | |
| contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. | |
| height (`int`, *optional*, defaults to 512): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to 512): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| strength (`float`, *optional*, defaults to 0.8): | |
| Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. | |
| `image` will be used as a starting point, adding more noise to it the larger the `strength`. The | |
| number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added | |
| noise will be maximum and the denoising process will run for the full number of iterations specified in | |
| `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator`, *optional*): | |
| A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
| deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
| The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| is_cancelled_callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. If the function returns | |
| `True`, the inference will be cancelled. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Returns: | |
| `None` if cancelled by `is_cancelled_callback`, | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, strength, callback_steps) | |
| # 2. Define call parameters | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_embeddings = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| max_embeddings_multiples, | |
| ) | |
| dtype = text_embeddings.dtype | |
| # 4. Preprocess image and mask | |
| if isinstance(image, PIL.Image.Image): | |
| image = preprocess_image(image) | |
| if image is not None: | |
| image = image.to(device=self.device, dtype=dtype) | |
| if isinstance(mask_image, PIL.Image.Image): | |
| mask_image = preprocess_mask(mask_image, self.vae_scale_factor) | |
| if mask_image is not None: | |
| mask = mask_image.to(device=self.device, dtype=dtype) | |
| mask = torch.cat([mask] * batch_size * num_images_per_prompt) | |
| else: | |
| mask = None | |
| # 5. set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device, image is None) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| # 6. Prepare latent variables | |
| latents, init_latents_orig, noise = self.prepare_latents( | |
| image, | |
| latent_timestep, | |
| batch_size * num_images_per_prompt, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 8. Denoising loop | |
| for i, t in enumerate(self.progress_bar(timesteps)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| if mask is not None: | |
| # masking | |
| init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) | |
| latents = (init_latents_proper * mask) + (latents * (1 - mask)) | |
| # call the callback, if provided | |
| if i % callback_steps == 0: | |
| if callback is not None: | |
| callback(i, t, latents) | |
| if is_cancelled_callback is not None and is_cancelled_callback(): | |
| return None | |
| # 9. Post-processing | |
| image = self.decode_latents(latents) | |
| # 10. Run safety checker | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype) | |
| # 11. Convert to PIL | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| if not return_dict: | |
| return image, has_nsfw_concept | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
| def text2img( | |
| self, | |
| prompt: Union[str, List[str]], | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| height: int = 512, | |
| width: int = 512, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[torch.Generator] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| max_embeddings_multiples: Optional[int] = 3, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| is_cancelled_callback: Optional[Callable[[], bool]] = None, | |
| callback_steps: int = 1, | |
| ): | |
| r""" | |
| Function for text-to-image generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| height (`int`, *optional*, defaults to 512): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to 512): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator`, *optional*): | |
| A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
| deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
| The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| is_cancelled_callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. If the function returns | |
| `True`, the inference will be cancelled. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| return self.__call__( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=num_images_per_prompt, | |
| eta=eta, | |
| generator=generator, | |
| latents=latents, | |
| max_embeddings_multiples=max_embeddings_multiples, | |
| output_type=output_type, | |
| return_dict=return_dict, | |
| callback=callback, | |
| is_cancelled_callback=is_cancelled_callback, | |
| callback_steps=callback_steps, | |
| ) | |
| def img2img( | |
| self, | |
| image: Union[torch.FloatTensor, PIL.Image.Image], | |
| prompt: Union[str, List[str]], | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| strength: float = 0.8, | |
| num_inference_steps: Optional[int] = 50, | |
| guidance_scale: Optional[float] = 7.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: Optional[float] = 0.0, | |
| generator: Optional[torch.Generator] = None, | |
| max_embeddings_multiples: Optional[int] = 3, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| is_cancelled_callback: Optional[Callable[[], bool]] = None, | |
| callback_steps: int = 1, | |
| ): | |
| r""" | |
| Function for image-to-image generation. | |
| Args: | |
| image (`torch.FloatTensor` or `PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch, that will be used as the starting point for the | |
| process. | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| strength (`float`, *optional*, defaults to 0.8): | |
| Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. | |
| `image` will be used as a starting point, adding more noise to it the larger the `strength`. The | |
| number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added | |
| noise will be maximum and the denoising process will run for the full number of iterations specified in | |
| `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. This parameter will be modulated by `strength`. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator`, *optional*): | |
| A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
| deterministic. | |
| max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
| The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| is_cancelled_callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. If the function returns | |
| `True`, the inference will be cancelled. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| return self.__call__( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=image, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| strength=strength, | |
| num_images_per_prompt=num_images_per_prompt, | |
| eta=eta, | |
| generator=generator, | |
| max_embeddings_multiples=max_embeddings_multiples, | |
| output_type=output_type, | |
| return_dict=return_dict, | |
| callback=callback, | |
| is_cancelled_callback=is_cancelled_callback, | |
| callback_steps=callback_steps, | |
| ) | |
| def inpaint( | |
| self, | |
| image: Union[torch.FloatTensor, PIL.Image.Image], | |
| mask_image: Union[torch.FloatTensor, PIL.Image.Image], | |
| prompt: Union[str, List[str]], | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| strength: float = 0.8, | |
| num_inference_steps: Optional[int] = 50, | |
| guidance_scale: Optional[float] = 7.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: Optional[float] = 0.0, | |
| generator: Optional[torch.Generator] = None, | |
| max_embeddings_multiples: Optional[int] = 3, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| is_cancelled_callback: Optional[Callable[[], bool]] = None, | |
| callback_steps: int = 1, | |
| ): | |
| r""" | |
| Function for inpaint. | |
| Args: | |
| image (`torch.FloatTensor` or `PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch, that will be used as the starting point for the | |
| process. This is the image whose masked region will be inpainted. | |
| mask_image (`torch.FloatTensor` or `PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be | |
| replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a | |
| PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should | |
| contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| strength (`float`, *optional*, defaults to 0.8): | |
| Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength` | |
| is 1, the denoising process will be run on the masked area for the full number of iterations specified | |
| in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more | |
| noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The reference number of denoising steps. More denoising steps usually lead to a higher quality image at | |
| the expense of slower inference. This parameter will be modulated by `strength`, as explained above. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator`, *optional*): | |
| A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
| deterministic. | |
| max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
| The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| is_cancelled_callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. If the function returns | |
| `True`, the inference will be cancelled. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| return self.__call__( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=image, | |
| mask_image=mask_image, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| strength=strength, | |
| num_images_per_prompt=num_images_per_prompt, | |
| eta=eta, | |
| generator=generator, | |
| max_embeddings_multiples=max_embeddings_multiples, | |
| output_type=output_type, | |
| return_dict=return_dict, | |
| callback=callback, | |
| is_cancelled_callback=is_cancelled_callback, | |
| callback_steps=callback_steps, | |
| ) | |