Sound-AI-SFX / diffusers /scripts /convert_original_audioldm_to_diffusers.py
hungchiayu1
initial commit
ffead1e
raw
history blame
43.7 kB
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the AudioLDM checkpoints."""
import argparse
import re
import torch
from transformers import (
AutoTokenizer,
ClapTextConfig,
ClapTextModelWithProjection,
SpeechT5HifiGan,
SpeechT5HifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.utils import is_omegaconf_available, is_safetensors_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_resnet_paths
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_resnet_paths
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_attention_paths
def renew_attention_paths(old_list):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_attention_paths
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "query.weight")
new_item = new_item.replace("q.bias", "query.bias")
new_item = new_item.replace("k.weight", "key.weight")
new_item = new_item.replace("k.bias", "key.bias")
new_item = new_item.replace("v.weight", "value.weight")
new_item = new_item.replace("v.bias", "value.bias")
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.assign_to_checkpoint
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def create_unet_diffusers_config(original_config, image_size: int):
"""
Creates a UNet config for diffusers based on the config of the original AudioLDM model.
"""
unet_params = original_config.model.params.unet_config.params
vae_params = original_config.model.params.first_stage_config.params.ddconfig
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
cross_attention_dim = (
unet_params.cross_attention_dim if "cross_attention_dim" in unet_params else block_out_channels
)
class_embed_type = "simple_projection" if "extra_film_condition_dim" in unet_params else None
projection_class_embeddings_input_dim = (
unet_params.extra_film_condition_dim if "extra_film_condition_dim" in unet_params else None
)
class_embeddings_concat = unet_params.extra_film_use_concat if "extra_film_use_concat" in unet_params else None
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"out_channels": unet_params.out_channels,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"cross_attention_dim": cross_attention_dim,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"class_embeddings_concat": class_embeddings_concat,
}
return config
# Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_vae_diffusers_config
def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
"""
Creates a VAE config for diffusers based on the config of the original AudioLDM model. Compared to the original
Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config.model.params else 0.18215
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
"scaling_factor": float(scaling_factor),
}
return config
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_diffusers_schedular
def create_diffusers_schedular(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
beta_schedule="scaled_linear",
)
return schedular
# Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.convert_ldm_unet_checkpoint
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
"""
Takes a state dict and a config, and returns a converted checkpoint. Compared to the original Stable Diffusion
conversion, this function additionally converts the learnt film embedding linear layer.
"""
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
print(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
else:
if sum(k.startswith("model_ema") for k in keys) > 100:
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
new_checkpoint["class_embedding.weight"] = unet_state_dict["film_emb.weight"]
new_checkpoint["class_embedding.bias"] = unet_state_dict["film_emb.bias"]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.convert_ldm_vae_checkpoint
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
CLAP_KEYS_TO_MODIFY_MAPPING = {
"text_branch": "text_model",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
CLAP_KEYS_TO_IGNORE = ["text_transform"]
CLAP_EXPECTED_MISSING_KEYS = ["text_model.embeddings.token_type_ids"]
def convert_open_clap_checkpoint(checkpoint):
"""
Takes a state dict and returns a converted CLAP checkpoint.
"""
# extract state dict for CLAP text embedding model, discarding the audio component
model_state_dict = {}
model_key = "cond_stage_model.model.text_"
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(model_key):
model_state_dict[key.replace(model_key, "text_")] = checkpoint.get(key)
new_checkpoint = {}
sequential_layers_pattern = r".*sequential.(\d+).*"
text_projection_pattern = r".*_projection.(\d+).*"
for key, value in model_state_dict.items():
# check if key should be ignored in mapping
if key.split(".")[0] in CLAP_KEYS_TO_IGNORE:
continue
# check if any key needs to be modified
for key_to_modify, new_key in CLAP_KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
if re.match(sequential_layers_pattern, key):
# replace sequential layers with list
sequential_layer = re.match(sequential_layers_pattern, key).group(1)
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.")
elif re.match(text_projection_pattern, key):
projecton_layer = int(re.match(text_projection_pattern, key).group(1))
# Because in CLAP they use `nn.Sequential`...
transformers_projection_layer = 1 if projecton_layer == 0 else 2
key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.")
if "audio" and "qkv" in key:
# split qkv into query key and value
mixed_qkv = value
qkv_dim = mixed_qkv.size(0) // 3
query_layer = mixed_qkv[:qkv_dim]
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
value_layer = mixed_qkv[qkv_dim * 2 :]
new_checkpoint[key.replace("qkv", "query")] = query_layer
new_checkpoint[key.replace("qkv", "key")] = key_layer
new_checkpoint[key.replace("qkv", "value")] = value_layer
else:
new_checkpoint[key] = value
return new_checkpoint
def create_transformers_vocoder_config(original_config):
"""
Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model.
"""
vocoder_params = original_config.model.params.vocoder_config.params
config = {
"model_in_dim": vocoder_params.num_mels,
"sampling_rate": vocoder_params.sampling_rate,
"upsample_initial_channel": vocoder_params.upsample_initial_channel,
"upsample_rates": list(vocoder_params.upsample_rates),
"upsample_kernel_sizes": list(vocoder_params.upsample_kernel_sizes),
"resblock_kernel_sizes": list(vocoder_params.resblock_kernel_sizes),
"resblock_dilation_sizes": [
list(resblock_dilation) for resblock_dilation in vocoder_params.resblock_dilation_sizes
],
"normalize_before": False,
}
return config
def convert_hifigan_checkpoint(checkpoint, config):
"""
Takes a state dict and config, and returns a converted HiFiGAN vocoder checkpoint.
"""
# extract state dict for vocoder
vocoder_state_dict = {}
vocoder_key = "first_stage_model.vocoder."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vocoder_key):
vocoder_state_dict[key.replace(vocoder_key, "")] = checkpoint.get(key)
# fix upsampler keys, everything else is correct already
for i in range(len(config.upsample_rates)):
vocoder_state_dict[f"upsampler.{i}.weight"] = vocoder_state_dict.pop(f"ups.{i}.weight")
vocoder_state_dict[f"upsampler.{i}.bias"] = vocoder_state_dict.pop(f"ups.{i}.bias")
if not config.normalize_before:
# if we don't set normalize_before then these variables are unused, so we set them to their initialised values
vocoder_state_dict["mean"] = torch.zeros(config.model_in_dim)
vocoder_state_dict["scale"] = torch.ones(config.model_in_dim)
return vocoder_state_dict
# Adapted from https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation/blob/84a0384742a22bd80c44e903e241f0623e874f1d/audioldm/utils.py#L72-L73
DEFAULT_CONFIG = {
"model": {
"params": {
"linear_start": 0.0015,
"linear_end": 0.0195,
"timesteps": 1000,
"channels": 8,
"scale_by_std": True,
"unet_config": {
"target": "audioldm.latent_diffusion.openaimodel.UNetModel",
"params": {
"extra_film_condition_dim": 512,
"extra_film_use_concat": True,
"in_channels": 8,
"out_channels": 8,
"model_channels": 128,
"attention_resolutions": [8, 4, 2],
"num_res_blocks": 2,
"channel_mult": [1, 2, 3, 5],
"num_head_channels": 32,
},
},
"first_stage_config": {
"target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL",
"params": {
"embed_dim": 8,
"ddconfig": {
"z_channels": 8,
"resolution": 256,
"in_channels": 1,
"out_ch": 1,
"ch": 128,
"ch_mult": [1, 2, 4],
"num_res_blocks": 2,
},
},
},
"vocoder_config": {
"target": "audioldm.first_stage_model.vocoder",
"params": {
"upsample_rates": [5, 4, 2, 2, 2],
"upsample_kernel_sizes": [16, 16, 8, 4, 4],
"upsample_initial_channel": 1024,
"resblock_kernel_sizes": [3, 7, 11],
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"num_mels": 64,
"sampling_rate": 16000,
},
},
},
},
}
def load_pipeline_from_original_audioldm_ckpt(
checkpoint_path: str,
original_config_file: str = None,
image_size: int = 512,
prediction_type: str = None,
extract_ema: bool = False,
scheduler_type: str = "ddim",
num_in_channels: int = None,
device: str = None,
from_safetensors: bool = False,
) -> AudioLDMPipeline:
"""
Load an AudioLDM pipeline object from a `.ckpt`/`.safetensors` file and (ideally) a `.yaml` config file.
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is
recommended that you override the default values and/or supply an `original_config_file` wherever possible.
:param checkpoint_path: Path to `.ckpt` file. :param original_config_file: Path to `.yaml` config file
corresponding to the original architecture.
If `None`, will be automatically instantiated based on default values.
:param image_size: The image size that the model was trained on. Use 512 for original AudioLDM checkpoints. :param
prediction_type: The prediction type that the model was trained on. Use `'epsilon'` for original
AudioLDM checkpoints.
:param num_in_channels: The number of input channels. If `None` number of input channels will be automatically
inferred.
:param scheduler_type: Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler",
"euler-ancestral", "dpm", "ddim"]`.
:param extract_ema: Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract
the EMA weights or not. Defaults to `False`. Pass `True` to extract the EMA weights. EMA weights usually
yield higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.
:param device: The device to use. Pass `None` to determine automatically. :param from_safetensors: If
`checkpoint_path` is in `safetensors` format, load checkpoint with safetensors
instead of PyTorch.
:return: An AudioLDMPipeline object representing the passed-in `.ckpt`/`.safetensors` file.
"""
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if from_safetensors:
if not is_safetensors_available():
raise ValueError(BACKENDS_MAPPING["safetensors"][1])
from safetensors import safe_open
checkpoint = {}
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
for key in f.keys():
checkpoint[key] = f.get_tensor(key)
else:
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = torch.load(checkpoint_path, map_location=device)
else:
checkpoint = torch.load(checkpoint_path, map_location=device)
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
if original_config_file is None:
original_config = DEFAULT_CONFIG
original_config = OmegaConf.create(original_config)
else:
original_config = OmegaConf.load(original_config_file)
if num_in_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
if (
"parameterization" in original_config["model"]["params"]
and original_config["model"]["params"]["parameterization"] == "v"
):
if prediction_type is None:
prediction_type = "v_prediction"
else:
if prediction_type is None:
prediction_type = "epsilon"
if image_size is None:
image_size = 512
num_train_timesteps = original_config.model.params.timesteps
beta_start = original_config.model.params.linear_start
beta_end = original_config.model.params.linear_end
scheduler = DDIMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
steps_offset=1,
clip_sample=False,
set_alpha_to_one=False,
prediction_type=prediction_type,
)
# make sure scheduler works correctly with DDIM
scheduler.register_to_config(clip_sample=False)
if scheduler_type == "pndm":
config = dict(scheduler.config)
config["skip_prk_steps"] = True
scheduler = PNDMScheduler.from_config(config)
elif scheduler_type == "lms":
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "heun":
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler":
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler-ancestral":
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == "ddim":
scheduler = scheduler
else:
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
# Convert the UNet2DModel
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
unet = UNet2DConditionModel(**unet_config)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
)
unet.load_state_dict(converted_unet_checkpoint)
# Convert the VAE model
vae_config = create_vae_diffusers_config(original_config, checkpoint=checkpoint, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
# Convert the text model
# AudioLDM uses the same configuration and tokenizer as the original CLAP model
config = ClapTextConfig.from_pretrained("laion/clap-htsat-unfused")
tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
converted_text_model = convert_open_clap_checkpoint(checkpoint)
text_model = ClapTextModelWithProjection(config)
missing_keys, unexpected_keys = text_model.load_state_dict(converted_text_model, strict=False)
# we expect not to have token_type_ids in our original state dict so let's ignore them
missing_keys = list(set(missing_keys) - set(CLAP_EXPECTED_MISSING_KEYS))
if len(unexpected_keys) > 0:
raise ValueError(f"Unexpected keys when loading CLAP model: {unexpected_keys}")
if len(missing_keys) > 0:
raise ValueError(f"Missing keys when loading CLAP model: {missing_keys}")
# Convert the vocoder model
vocoder_config = create_transformers_vocoder_config(original_config)
vocoder_config = SpeechT5HifiGanConfig(**vocoder_config)
converted_vocoder_checkpoint = convert_hifigan_checkpoint(checkpoint, vocoder_config)
vocoder = SpeechT5HifiGan(vocoder_config)
vocoder.load_state_dict(converted_vocoder_checkpoint)
# Instantiate the diffusers pipeline
pipe = AudioLDMPipeline(
vae=vae,
text_encoder=text_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
vocoder=vocoder,
)
return pipe
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
default=None,
type=str,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--scheduler_type",
default="ddim",
type=str,
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
)
parser.add_argument(
"--image_size",
default=None,
type=int,
help=("The image size that the model was trained on."),
)
parser.add_argument(
"--prediction_type",
default=None,
type=str,
help=("The prediction type that the model was trained on."),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
args = parser.parse_args()
pipe = load_pipeline_from_original_audioldm_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
from_safetensors=args.from_safetensors,
device=args.device,
)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)