marlenezw's picture
adding download functionality into the code.
32438d0
raw
history blame
8.39 kB
"""
# Copyright 2020 Adobe
# All Rights Reserved.
# NOTICE: Adobe permits you to use, modify, and distribute this file in
# accordance with the terms of the Adobe license agreement accompanying
# it.
"""
import sys
sys.path.append('thirdparty/AdaptiveWingLoss')
import os, glob
import numpy as np
import cv2
import argparse
from src.approaches.train_image_translation import Image_translation_block
import torch
import pickle
import face_alignment
from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor
import shutil
import util.utils as util
from scipy.signal import savgol_filter
from download import download_file
from src.approaches.train_audio2landmark import Audio2landmark_model
default_head_name = 'dali'
ADD_NAIVE_EYE = True
CLOSE_INPUT_FACE_MOUTH = False
auto_vc_model_path = download_file(repo_name='marlenezw/AutoVC_Voice_Conversion', filename='ckpt_autovc.pth')
speaker_model_path = download_file(repo_name='marlenezw/Self_Attention_Network', filename='ckpt_speaker_branch.pth')
parser = argparse.ArgumentParser()
parser.add_argument('--jpg', type=str, default='{}.jpg'.format(default_head_name))
parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true')
parser.add_argument('--load_AUTOVC_name', type=str, default=auto_vc_model_path)
parser.add_argument('--load_a2l_G_name', type=str, default=speaker_model_path)
parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth')
parser.add_argument('--load_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c
parser.add_argument('--amp_lip_x', type=float, default=2.)
parser.add_argument('--amp_lip_y', type=float, default=2.)
parser.add_argument('--amp_pos', type=float, default=.5)
parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8',
parser.add_argument('--add_audio_in', default=False, action='store_true')
parser.add_argument('--comb_fan_awing', default=False, action='store_true')
parser.add_argument('--output_folder', type=str, default='MakeItTalk/examples')
parser.add_argument('--test_end2end', default=True, action='store_true')
parser.add_argument('--dump_dir', type=str, default='', help='')
parser.add_argument('--pos_dim', default=7, type=int)
parser.add_argument('--use_prior_net', default=True, action='store_true')
parser.add_argument('--transformer_d_model', default=32, type=int)
parser.add_argument('--transformer_N', default=2, type=int)
parser.add_argument('--transformer_heads', default=2, type=int)
parser.add_argument('--spk_emb_enc_size', default=16, type=int)
parser.add_argument('--init_content_encoder', type=str, default='')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay')
parser.add_argument('--write', default=False, action='store_true')
parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size')
parser.add_argument('--emb_coef', default=3.0, type=float)
parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float)
parser.add_argument('--use_11spk_only', default=False, action='store_true')
opt_parser = parser.parse_args()
''' STEP 1: preprocess input single image '''
img =cv2.imread('MakeItTalk/examples/' + opt_parser.jpg)
predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='cuda', flip_input=True)
shapes = predictor.get_landmarks(img)
if (not shapes or len(shapes) != 1):
print('Cannot detect face landmarks. Exit.')
exit(-1)
shape_3d = shapes[0]
if(opt_parser.close_input_face_mouth):
util.close_input_face_mouth(shape_3d)
''' Additional manual adjustment to input face landmarks (slimmer lips and wider eyes) '''
# shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * 0.95 + np.mean(shape_3d[48:, 0])
shape_3d[49:54, 1] += 1.
shape_3d[55:60, 1] -= 1.
shape_3d[[37,38,43,44], 1] -=2
shape_3d[[40,41,46,47], 1] +=2
''' STEP 2: normalize face as input to audio branch '''
shape_3d, scale, shift = util.norm_input_face(shape_3d)
''' STEP 3: Generate audio data as input to audio branch '''
# audio real data
au_data = []
au_emb = []
ains = glob.glob1('MakeItTalk/examples', '*.wav')
ains = [item for item in ains if item != 'tmp.wav']
ains.sort()
for ain in ains:
os.system('ffmpeg -y -loglevel error -i MakeItTalk/examples/{} -ar 16000 MakeItTalk/examples/tmp.wav'.format(ain))
shutil.copyfile('MakeItTalk/examples/tmp.wav', 'MakeItTalk/examples/{}'.format(ain))
# au embedding
from thirdparty.resemblyer_util.speaker_emb import get_spk_emb
me, ae = get_spk_emb('MakeItTalk/examples/{}'.format(ain))
au_emb.append(me.reshape(-1))
print('Processing audio file', ain)
c = AutoVC_mel_Convertor('MakeItTalk/examples')
au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('MakeItTalk/examples', ain),
autovc_model_path=opt_parser.load_AUTOVC_name)
au_data += au_data_i
if(os.path.isfile('MakeItTalk/examples/tmp.wav')):
os.remove('MakeItTalk/examples/tmp.wav')
# landmark fake placeholder
fl_data = []
rot_tran, rot_quat, anchor_t_shape = [], [], []
for au, info in au_data:
au_length = au.shape[0]
fl = np.zeros(shape=(au_length, 68 * 3))
fl_data.append((fl, info))
rot_tran.append(np.zeros(shape=(au_length, 3, 4)))
rot_quat.append(np.zeros(shape=(au_length, 4)))
anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3)))
if(os.path.exists(os.path.join('MakeItTalk/examples', 'dump', 'random_val_fl.pickle'))):
os.remove(os.path.join('MakeItTalk/examples', 'dump', 'random_val_fl.pickle'))
if(os.path.exists(os.path.join('MakeItTalk/examples', 'dump', 'random_val_fl_interp.pickle'))):
os.remove(os.path.join('MakeItTalk/examples', 'dump', 'random_val_fl_interp.pickle'))
if(os.path.exists(os.path.join('MakeItTalk/examples', 'dump', 'random_val_au.pickle'))):
os.remove(os.path.join('MakeItTalk/examples', 'dump', 'random_val_au.pickle'))
if (os.path.exists(os.path.join('MakeItTalk/examples', 'dump', 'random_val_gaze.pickle'))):
os.remove(os.path.join('MakeItTalk/examples', 'dump', 'random_val_gaze.pickle'))
with open(os.path.join('MakeItTalk/examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp:
pickle.dump(fl_data, fp)
with open(os.path.join('MakeItTalk/examples', 'dump', 'random_val_au.pickle'), 'wb') as fp:
pickle.dump(au_data, fp)
with open(os.path.join('MakeItTalk/examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp:
gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape}
pickle.dump(gaze, fp)
''' STEP 4: RUN audio->landmark network'''
model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d)
if(len(opt_parser.reuse_train_emb_list) == 0):
model.test(au_emb=au_emb)
else:
model.test(au_emb=None)
''' STEP 5: de-normalize the output to the original image scale '''
fls = glob.glob1('MakeItTalk/examples', 'pred_fls_*.txt') #it looks like fls is the name of our desired output video but as a group of numpy arrays in a txt file
fls.sort()
for i in range(0,len(fls)):
fl = np.loadtxt(os.path.join('MakeItTalk/examples', fls[i])).reshape((-1, 68,3)) #this is our desired image loaded into numpy ndarray. Data read from the text file.
fl[:, :, 0:2] = -fl[:, :, 0:2] #i think this is adjusting the color
fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift #an ndarray image array is (H, W, D) i.e. (height, width, depth), so we are adjusting depth here
if (ADD_NAIVE_EYE):
fl = util.add_naive_eye(fl)
# additional smooth
fl = fl.reshape((-1, 204))
fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0)
fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0)
fl = fl.reshape((-1, 68, 3))
''' STEP 6: Imag2image translation '''
model = Image_translation_block(opt_parser, single_test=True)
with torch.no_grad():
model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0]) #fls is the video we want
print('finish image2image gen')
os.remove(os.path.join('MakeItTalk/examples', fls[i]))