Spaces:
Running
on
T4
Running
on
T4
from __future__ import print_function, division | |
import torch | |
import argparse | |
import numpy as np | |
import torch.nn as nn | |
import time | |
import os | |
from core.evaler import eval_model | |
from core.dataloader import get_dataset | |
from core import models | |
from tensorboardX import SummaryWriter | |
# Parse arguments | |
parser = argparse.ArgumentParser() | |
# Dataset paths | |
parser.add_argument('--val_img_dir', type=str, | |
help='Validation image directory') | |
parser.add_argument('--val_landmarks_dir', type=str, | |
help='Validation landmarks directory') | |
parser.add_argument('--num_landmarks', type=int, default=68, | |
help='Number of landmarks') | |
# Checkpoint and pretrained weights | |
parser.add_argument('--ckpt_save_path', type=str, | |
help='a directory to save checkpoint file') | |
parser.add_argument('--pretrained_weights', type=str, | |
help='a directory to save pretrained_weights') | |
# Eval options | |
parser.add_argument('--batch_size', type=int, default=25, | |
help='learning rate decay after each epoch') | |
# Network parameters | |
parser.add_argument('--hg_blocks', type=int, default=4, | |
help='Number of HG blocks to stack') | |
parser.add_argument('--gray_scale', type=str, default="False", | |
help='Whether to convert RGB image into gray scale during training') | |
parser.add_argument('--end_relu', type=str, default="False", | |
help='Whether to add relu at the end of each HG module') | |
args = parser.parse_args() | |
VAL_IMG_DIR = args.val_img_dir | |
VAL_LANDMARKS_DIR = args.val_landmarks_dir | |
CKPT_SAVE_PATH = args.ckpt_save_path | |
BATCH_SIZE = args.batch_size | |
PRETRAINED_WEIGHTS = args.pretrained_weights | |
GRAY_SCALE = False if args.gray_scale == 'False' else True | |
HG_BLOCKS = args.hg_blocks | |
END_RELU = False if args.end_relu == 'False' else True | |
NUM_LANDMARKS = args.num_landmarks | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
writer = SummaryWriter(CKPT_SAVE_PATH) | |
dataloaders, dataset_sizes = get_dataset(VAL_IMG_DIR, VAL_LANDMARKS_DIR, | |
BATCH_SIZE, NUM_LANDMARKS) | |
use_gpu = torch.cuda.is_available() | |
model_ft = models.FAN(HG_BLOCKS, END_RELU, GRAY_SCALE, NUM_LANDMARKS) | |
if PRETRAINED_WEIGHTS != "None": | |
checkpoint = torch.load(PRETRAINED_WEIGHTS) | |
if 'state_dict' not in checkpoint: | |
model_ft.load_state_dict(checkpoint) | |
else: | |
pretrained_weights = checkpoint['state_dict'] | |
model_weights = model_ft.state_dict() | |
pretrained_weights = {k: v for k, v in pretrained_weights.items() \ | |
if k in model_weights} | |
model_weights.update(pretrained_weights) | |
model_ft.load_state_dict(model_weights) | |
model_ft = model_ft.to(device) | |
model_ft = eval_model(model_ft, dataloaders, dataset_sizes, writer, use_gpu, 1, 'val', CKPT_SAVE_PATH, NUM_LANDMARKS) | |