Spaces:
Sleeping
Sleeping
""" | |
# Copyright 2020 Adobe | |
# All Rights Reserved. | |
# NOTICE: Adobe permits you to use, modify, and distribute this file in | |
# accordance with the terms of the Adobe license agreement accompanying | |
# it. | |
""" | |
import sys | |
sys.path.append('thirdparty/AdaptiveWingLoss') | |
import os, glob | |
import numpy as np | |
import cv2 | |
import argparse | |
from src.approaches.train_image_translation import Image_translation_block | |
import torch | |
import pickle | |
import face_alignment | |
from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor | |
import shutil | |
import util.utils as util | |
from scipy.signal import savgol_filter | |
from src.approaches.train_audio2landmark import Audio2landmark_model | |
default_head_name = 'dali' | |
ADD_NAIVE_EYE = True | |
CLOSE_INPUT_FACE_MOUTH = False | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--jpg', type=str, default='{}.jpg'.format(default_head_name)) | |
parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true') | |
parser.add_argument('--load_AUTOVC_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_autovc.pth') | |
parser.add_argument('--load_a2l_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth') | |
parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth') | |
parser.add_argument('--load_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c | |
parser.add_argument('--amp_lip_x', type=float, default=2.) | |
parser.add_argument('--amp_lip_y', type=float, default=2.) | |
parser.add_argument('--amp_pos', type=float, default=.5) | |
parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8', | |
parser.add_argument('--add_audio_in', default=False, action='store_true') | |
parser.add_argument('--comb_fan_awing', default=False, action='store_true') | |
parser.add_argument('--output_folder', type=str, default='MakeItTalk/examples') | |
parser.add_argument('--test_end2end', default=True, action='store_true') | |
parser.add_argument('--dump_dir', type=str, default='', help='') | |
parser.add_argument('--pos_dim', default=7, type=int) | |
parser.add_argument('--use_prior_net', default=True, action='store_true') | |
parser.add_argument('--transformer_d_model', default=32, type=int) | |
parser.add_argument('--transformer_N', default=2, type=int) | |
parser.add_argument('--transformer_heads', default=2, type=int) | |
parser.add_argument('--spk_emb_enc_size', default=16, type=int) | |
parser.add_argument('--init_content_encoder', type=str, default='') | |
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate') | |
parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay') | |
parser.add_argument('--write', default=False, action='store_true') | |
parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size') | |
parser.add_argument('--emb_coef', default=3.0, type=float) | |
parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float) | |
parser.add_argument('--use_11spk_only', default=False, action='store_true') | |
opt_parser = parser.parse_args() | |
''' STEP 1: preprocess input single image ''' | |
img =cv2.imread('MakeItTalk/examples/' + opt_parser.jpg) | |
predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='cuda', flip_input=True) | |
shapes = predictor.get_landmarks(img) | |
if (not shapes or len(shapes) != 1): | |
print('Cannot detect face landmarks. Exit.') | |
exit(-1) | |
shape_3d = shapes[0] | |
if(opt_parser.close_input_face_mouth): | |
util.close_input_face_mouth(shape_3d) | |
''' Additional manual adjustment to input face landmarks (slimmer lips and wider eyes) ''' | |
# shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * 0.95 + np.mean(shape_3d[48:, 0]) | |
shape_3d[49:54, 1] += 1. | |
shape_3d[55:60, 1] -= 1. | |
shape_3d[[37,38,43,44], 1] -=2 | |
shape_3d[[40,41,46,47], 1] +=2 | |
''' STEP 2: normalize face as input to audio branch ''' | |
shape_3d, scale, shift = util.norm_input_face(shape_3d) | |
''' STEP 3: Generate audio data as input to audio branch ''' | |
# audio real data | |
au_data = [] | |
au_emb = [] | |
ains = glob.glob1('MakeItTalk/examples', '*.wav') | |
ains = [item for item in ains if item != 'tmp.wav'] | |
ains.sort() | |
for ain in ains: | |
os.system('ffmpeg -y -loglevel error -i MakeItTalk/examples/{} -ar 16000 MakeItTalk/examples/tmp.wav'.format(ain)) | |
shutil.copyfile('MakeItTalk/examples/tmp.wav', 'MakeItTalk/examples/{}'.format(ain)) | |
# au embedding | |
from thirdparty.resemblyer_util.speaker_emb import get_spk_emb | |
me, ae = get_spk_emb('MakeItTalk/examples/{}'.format(ain)) | |
au_emb.append(me.reshape(-1)) | |
print('Processing audio file', ain) | |
c = AutoVC_mel_Convertor('MakeItTalk/examples') | |
au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('MakeItTalk/examples', ain), | |
autovc_model_path=opt_parser.load_AUTOVC_name) | |
au_data += au_data_i | |
if(os.path.isfile('MakeItTalk/examples/tmp.wav')): | |
os.remove('MakeItTalk/examples/tmp.wav') | |
# landmark fake placeholder | |
fl_data = [] | |
rot_tran, rot_quat, anchor_t_shape = [], [], [] | |
for au, info in au_data: | |
au_length = au.shape[0] | |
fl = np.zeros(shape=(au_length, 68 * 3)) | |
fl_data.append((fl, info)) | |
rot_tran.append(np.zeros(shape=(au_length, 3, 4))) | |
rot_quat.append(np.zeros(shape=(au_length, 4))) | |
anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3))) | |
if(os.path.exists(os.path.join('MakeItTalk/examples', 'dump', 'random_val_fl.pickle'))): | |
os.remove(os.path.join('MakeItTalk/examples', 'dump', 'random_val_fl.pickle')) | |
if(os.path.exists(os.path.join('MakeItTalk/examples', 'dump', 'random_val_fl_interp.pickle'))): | |
os.remove(os.path.join('MakeItTalk/examples', 'dump', 'random_val_fl_interp.pickle')) | |
if(os.path.exists(os.path.join('MakeItTalk/examples', 'dump', 'random_val_au.pickle'))): | |
os.remove(os.path.join('MakeItTalk/examples', 'dump', 'random_val_au.pickle')) | |
if (os.path.exists(os.path.join('MakeItTalk/examples', 'dump', 'random_val_gaze.pickle'))): | |
os.remove(os.path.join('MakeItTalk/examples', 'dump', 'random_val_gaze.pickle')) | |
with open(os.path.join('MakeItTalk/examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp: | |
pickle.dump(fl_data, fp) | |
with open(os.path.join('MakeItTalk/examples', 'dump', 'random_val_au.pickle'), 'wb') as fp: | |
pickle.dump(au_data, fp) | |
with open(os.path.join('MakeItTalk/examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp: | |
gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape} | |
pickle.dump(gaze, fp) | |
''' STEP 4: RUN audio->landmark network''' | |
model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d) | |
if(len(opt_parser.reuse_train_emb_list) == 0): | |
model.test(au_emb=au_emb) | |
else: | |
model.test(au_emb=None) | |
''' STEP 5: de-normalize the output to the original image scale ''' | |
fls = glob.glob1('MakeItTalk/examples', 'pred_fls_*.txt') #it looks like fls is the name of our desired output video but as a group of numpy arrays in a txt file | |
fls.sort() | |
for i in range(0,len(fls)): | |
fl = np.loadtxt(os.path.join('MakeItTalk/examples', fls[i])).reshape((-1, 68,3)) #this is our desired image loaded into numpy ndarray. Data read from the text file. | |
fl[:, :, 0:2] = -fl[:, :, 0:2] #i think this is adjusting the color | |
fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift #an ndarray image array is (H, W, D) i.e. (height, width, depth), so we are adjusting depth here | |
if (ADD_NAIVE_EYE): | |
fl = util.add_naive_eye(fl) | |
# additional smooth | |
fl = fl.reshape((-1, 204)) | |
fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0) | |
fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0) | |
fl = fl.reshape((-1, 68, 3)) | |
''' STEP 6: Imag2image translation ''' | |
model = Image_translation_block(opt_parser, single_test=True) | |
with torch.no_grad(): | |
model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0]) #fls is the video we want | |
print('finish image2image gen') | |
os.remove(os.path.join('MakeItTalk/examples', fls[i])) | |