Spaces:
Sleeping
Sleeping
from __future__ import print_function, division | |
import os | |
import sys | |
import math | |
import torch | |
import cv2 | |
from PIL import Image | |
from skimage import io | |
from skimage import transform as ski_transform | |
from scipy import ndimage | |
import numpy as np | |
import matplotlib | |
import matplotlib.pyplot as plt | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision import transforms, utils | |
def _gaussian( | |
size=3, sigma=0.25, amplitude=1, normalize=False, width=None, | |
height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5, | |
mean_vert=0.5): | |
# handle some defaults | |
if width is None: | |
width = size | |
if height is None: | |
height = size | |
if sigma_horz is None: | |
sigma_horz = sigma | |
if sigma_vert is None: | |
sigma_vert = sigma | |
center_x = mean_horz * width + 0.5 | |
center_y = mean_vert * height + 0.5 | |
gauss = np.empty((height, width), dtype=np.float32) | |
# generate kernel | |
for i in range(height): | |
for j in range(width): | |
gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / ( | |
sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0)) | |
if normalize: | |
gauss = gauss / np.sum(gauss) | |
return gauss | |
def draw_gaussian(image, point, sigma): | |
# Check if the gaussian is inside | |
ul = [np.floor(np.floor(point[0]) - 3 * sigma), | |
np.floor(np.floor(point[1]) - 3 * sigma)] | |
br = [np.floor(np.floor(point[0]) + 3 * sigma), | |
np.floor(np.floor(point[1]) + 3 * sigma)] | |
if (ul[0] > image.shape[1] or ul[1] > | |
image.shape[0] or br[0] < 1 or br[1] < 1): | |
return image | |
size = 6 * sigma + 1 | |
g = _gaussian(size) | |
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - | |
int(max(1, ul[0])) + int(max(1, -ul[0]))] | |
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - | |
int(max(1, ul[1])) + int(max(1, -ul[1]))] | |
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] | |
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] | |
assert (g_x[0] > 0 and g_y[1] > 0) | |
correct = False | |
while not correct: | |
try: | |
image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1] | |
] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]] | |
correct = True | |
except: | |
print('img_x: {}, img_y: {}, g_x:{}, g_y:{}, point:{}, g_shape:{}, ul:{}, br:{}'.format(img_x, img_y, g_x, g_y, point, g.shape, ul, br)) | |
ul = [np.floor(np.floor(point[0]) - 3 * sigma), | |
np.floor(np.floor(point[1]) - 3 * sigma)] | |
br = [np.floor(np.floor(point[0]) + 3 * sigma), | |
np.floor(np.floor(point[1]) + 3 * sigma)] | |
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - | |
int(max(1, ul[0])) + int(max(1, -ul[0]))] | |
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - | |
int(max(1, ul[1])) + int(max(1, -ul[1]))] | |
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] | |
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] | |
pass | |
image[image > 1] = 1 | |
return image | |
def transform(point, center, scale, resolution, rotation=0, invert=False): | |
_pt = np.ones(3) | |
_pt[0] = point[0] | |
_pt[1] = point[1] | |
h = 200.0 * scale | |
t = np.eye(3) | |
t[0, 0] = resolution / h | |
t[1, 1] = resolution / h | |
t[0, 2] = resolution * (-center[0] / h + 0.5) | |
t[1, 2] = resolution * (-center[1] / h + 0.5) | |
if rotation != 0: | |
rotation = -rotation | |
r = np.eye(3) | |
ang = rotation * math.pi / 180.0 | |
s = math.sin(ang) | |
c = math.cos(ang) | |
r[0][0] = c | |
r[0][1] = -s | |
r[1][0] = s | |
r[1][1] = c | |
t_ = np.eye(3) | |
t_[0][2] = -resolution / 2.0 | |
t_[1][2] = -resolution / 2.0 | |
t_inv = torch.eye(3) | |
t_inv[0][2] = resolution / 2.0 | |
t_inv[1][2] = resolution / 2.0 | |
t = reduce(np.matmul, [t_inv, r, t_, t]) | |
if invert: | |
t = np.linalg.inv(t) | |
new_point = (np.matmul(t, _pt))[0:2] | |
return new_point.astype(int) | |
def cv_crop(image, landmarks, center, scale, resolution=256, center_shift=0): | |
new_image = cv2.copyMakeBorder(image, center_shift, | |
center_shift, | |
center_shift, | |
center_shift, | |
cv2.BORDER_CONSTANT, value=[0,0,0]) | |
new_landmarks = landmarks.copy() | |
if center_shift != 0: | |
center[0] += center_shift | |
center[1] += center_shift | |
new_landmarks = new_landmarks + center_shift | |
length = 200 * scale | |
top = int(center[1] - length // 2) | |
bottom = int(center[1] + length // 2) | |
left = int(center[0] - length // 2) | |
right = int(center[0] + length // 2) | |
y_pad = abs(min(top, new_image.shape[0] - bottom, 0)) | |
x_pad = abs(min(left, new_image.shape[1] - right, 0)) | |
top, bottom, left, right = top + y_pad, bottom + y_pad, left + x_pad, right + x_pad | |
new_image = cv2.copyMakeBorder(new_image, y_pad, | |
y_pad, | |
x_pad, | |
x_pad, | |
cv2.BORDER_CONSTANT, value=[0,0,0]) | |
new_image = new_image[top:bottom, left:right] | |
new_image = cv2.resize(new_image, dsize=(int(resolution), int(resolution)), | |
interpolation=cv2.INTER_LINEAR) | |
new_landmarks[:, 0] = (new_landmarks[:, 0] + x_pad - left) * resolution / length | |
new_landmarks[:, 1] = (new_landmarks[:, 1] + y_pad - top) * resolution / length | |
return new_image, new_landmarks | |
def cv_rotate(image, landmarks, heatmap, rot, scale, resolution=256): | |
img_mat = cv2.getRotationMatrix2D((resolution//2, resolution//2), rot, scale) | |
ones = np.ones(shape=(landmarks.shape[0], 1)) | |
stacked_landmarks = np.hstack([landmarks, ones]) | |
new_landmarks = img_mat.dot(stacked_landmarks.T).T | |
if np.max(new_landmarks) > 255 or np.min(new_landmarks) < 0: | |
return image, landmarks, heatmap | |
else: | |
new_image = cv2.warpAffine(image, img_mat, (resolution, resolution)) | |
if heatmap is not None: | |
new_heatmap = np.zeros((heatmap.shape[0], 64, 64)) | |
for i in range(heatmap.shape[0]): | |
if new_landmarks[i][0] > 0: | |
new_heatmap[i] = draw_gaussian(new_heatmap[i], | |
new_landmarks[i]/4.0+1, 1) | |
return new_image, new_landmarks, new_heatmap | |
def show_landmarks(image, heatmap, gt_landmarks, gt_heatmap): | |
"""Show image with pred_landmarks""" | |
pred_landmarks = [] | |
pred_landmarks, _ = get_preds_fromhm(torch.from_numpy(heatmap).unsqueeze(0)) | |
pred_landmarks = pred_landmarks.squeeze()*4 | |
# pred_landmarks2 = get_preds_fromhm2(heatmap) | |
heatmap = np.max(gt_heatmap, axis=0) | |
heatmap = heatmap / np.max(heatmap) | |
# image = ski_transform.resize(image, (64, 64))*255 | |
image = image.astype(np.uint8) | |
heatmap = np.max(gt_heatmap, axis=0) | |
heatmap = ski_transform.resize(heatmap, (image.shape[0], image.shape[1])) | |
heatmap *= 255 | |
heatmap = heatmap.astype(np.uint8) | |
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) | |
plt.imshow(image) | |
plt.scatter(gt_landmarks[:, 0], gt_landmarks[:, 1], s=0.5, marker='.', c='g') | |
plt.scatter(pred_landmarks[:, 0], pred_landmarks[:, 1], s=0.5, marker='.', c='r') | |
plt.pause(0.001) # pause a bit so that plots are updated | |
def fan_NME(pred_heatmaps, gt_landmarks, num_landmarks=68): | |
''' | |
Calculate total NME for a batch of data | |
Args: | |
pred_heatmaps: torch tensor of size [batch, points, height, width] | |
gt_landmarks: torch tesnsor of size [batch, points, x, y] | |
Returns: | |
nme: sum of nme for this batch | |
''' | |
nme = 0 | |
pred_landmarks, _ = get_preds_fromhm(pred_heatmaps) | |
pred_landmarks = pred_landmarks.numpy() | |
gt_landmarks = gt_landmarks.numpy() | |
for i in range(pred_landmarks.shape[0]): | |
pred_landmark = pred_landmarks[i] * 4.0 | |
gt_landmark = gt_landmarks[i] | |
if num_landmarks == 68: | |
left_eye = np.average(gt_landmark[36:42], axis=0) | |
right_eye = np.average(gt_landmark[42:48], axis=0) | |
norm_factor = np.linalg.norm(left_eye - right_eye) | |
# norm_factor = np.linalg.norm(gt_landmark[36]- gt_landmark[45]) | |
elif num_landmarks == 98: | |
norm_factor = np.linalg.norm(gt_landmark[60]- gt_landmark[72]) | |
elif num_landmarks == 19: | |
left, top = gt_landmark[-2, :] | |
right, bottom = gt_landmark[-1, :] | |
norm_factor = math.sqrt(abs(right - left)*abs(top-bottom)) | |
gt_landmark = gt_landmark[:-2, :] | |
elif num_landmarks == 29: | |
# norm_factor = np.linalg.norm(gt_landmark[8]- gt_landmark[9]) | |
norm_factor = np.linalg.norm(gt_landmark[16]- gt_landmark[17]) | |
nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor | |
return nme | |
def fan_NME_hm(pred_heatmaps, gt_heatmaps, num_landmarks=68): | |
''' | |
Calculate total NME for a batch of data | |
Args: | |
pred_heatmaps: torch tensor of size [batch, points, height, width] | |
gt_landmarks: torch tesnsor of size [batch, points, x, y] | |
Returns: | |
nme: sum of nme for this batch | |
''' | |
nme = 0 | |
pred_landmarks, _ = get_index_fromhm(pred_heatmaps) | |
pred_landmarks = pred_landmarks.numpy() | |
gt_landmarks = gt_landmarks.numpy() | |
for i in range(pred_landmarks.shape[0]): | |
pred_landmark = pred_landmarks[i] * 4.0 | |
gt_landmark = gt_landmarks[i] | |
if num_landmarks == 68: | |
left_eye = np.average(gt_landmark[36:42], axis=0) | |
right_eye = np.average(gt_landmark[42:48], axis=0) | |
norm_factor = np.linalg.norm(left_eye - right_eye) | |
else: | |
norm_factor = np.linalg.norm(gt_landmark[60]- gt_landmark[72]) | |
nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor | |
return nme | |
def power_transform(img, power): | |
img = np.array(img) | |
img_new = np.power((img/255.0), power) * 255.0 | |
img_new = img_new.astype(np.uint8) | |
img_new = Image.fromarray(img_new) | |
return img_new | |
def get_preds_fromhm(hm, center=None, scale=None, rot=None): | |
max, idx = torch.max( | |
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) | |
idx += 1 | |
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() | |
preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1) | |
preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1) | |
for i in range(preds.size(0)): | |
for j in range(preds.size(1)): | |
hm_ = hm[i, j, :] | |
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1 | |
if pX > 0 and pX < 63 and pY > 0 and pY < 63: | |
diff = torch.FloatTensor( | |
[hm_[pY, pX + 1] - hm_[pY, pX - 1], | |
hm_[pY + 1, pX] - hm_[pY - 1, pX]]) | |
preds[i, j].add_(diff.sign_().mul_(.25)) | |
preds.add_(-0.5) | |
preds_orig = torch.zeros(preds.size()) | |
if center is not None and scale is not None: | |
for i in range(hm.size(0)): | |
for j in range(hm.size(1)): | |
preds_orig[i, j] = transform( | |
preds[i, j], center, scale, hm.size(2), rot, True) | |
return preds, preds_orig | |
def get_index_fromhm(hm): | |
max, idx = torch.max( | |
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) | |
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() | |
preds[..., 0].remainder_(hm.size(3)) | |
preds[..., 1].div_(hm.size(2)).floor_() | |
for i in range(preds.size(0)): | |
for j in range(preds.size(1)): | |
hm_ = hm[i, j, :] | |
pX, pY = int(preds[i, j, 0]), int(preds[i, j, 1]) | |
if pX > 0 and pX < 63 and pY > 0 and pY < 63: | |
diff = torch.FloatTensor( | |
[hm_[pY, pX + 1] - hm_[pY, pX - 1], | |
hm_[pY + 1, pX] - hm_[pY - 1, pX]]) | |
preds[i, j].add_(diff.sign_().mul_(.25)) | |
return preds | |
def shuffle_lr(parts, num_landmarks=68, pairs=None): | |
if num_landmarks == 68: | |
if pairs is None: | |
pairs = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10], | |
[7, 9], [17, 26], [18, 25], [19, 24], [20, 23], [21, 22], [36, 45], | |
[37, 44], [38, 43], [39, 42], [41, 46], [40, 47], [31, 35], [32, 34], | |
[50, 52], [49, 53], [48, 54], [61, 63], [60, 64], [67, 65], [59, 55], [58, 56]] | |
elif num_landmarks == 98: | |
if pairs is None: | |
pairs = [[0, 32], [1,31], [2, 30], [3, 29], [4, 28], [5, 27], [6, 26], [7, 25], [8, 24], [9, 23], [10, 22], [11, 21], [12, 20], [13, 19], [14, 18], [15, 17], [33, 46], [34, 45], [35, 44], [36, 43], [37, 42], [38, 50], [39, 49], [40, 48], [41, 47], [60, 72], [61, 71], [62, 70], [63, 69], [64, 68], [65, 75], [66, 74], [67, 73], [96, 97], [55, 59], [56, 58], [76, 82], [77, 81], [78, 80], [88, 92], [89, 91], [95, 93], [87, 83], [86, 84]] | |
elif num_landmarks == 19: | |
if pairs is None: | |
pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9], [12, 14], [15, 17]] | |
elif num_landmarks == 29: | |
if pairs is None: | |
pairs = [[0, 1], [4, 6], [5, 7], [2, 3], [8, 9], [12, 14], [16, 17], [13, 15], [10, 11], [18, 19], [22, 23]] | |
for matched_p in pairs: | |
idx1, idx2 = matched_p[0], matched_p[1] | |
tmp = np.copy(parts[idx1]) | |
np.copyto(parts[idx1], parts[idx2]) | |
np.copyto(parts[idx2], tmp) | |
return parts | |
def generate_weight_map(weight_map,heatmap): | |
k_size = 3 | |
dilate = ndimage.grey_dilation(heatmap ,size=(k_size,k_size)) | |
weight_map[np.where(dilate>0.2)] = 1 | |
return weight_map | |
def fig2data(fig): | |
""" | |
@brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it | |
@param fig a matplotlib figure | |
@return a numpy 3D array of RGBA values | |
""" | |
# draw the renderer | |
fig.canvas.draw ( ) | |
# Get the RGB buffer from the figure | |
w,h = fig.canvas.get_width_height() | |
buf = np.fromstring (fig.canvas.tostring_rgb(), dtype=np.uint8) | |
buf.shape = (w, h, 3) | |
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode | |
buf = np.roll (buf, 3, axis=2) | |
return buf | |