Spaces:
Sleeping
Sleeping
import sys | |
from facewarp.gen_puppet_utils import * | |
''' ================================================ | |
FOA face landmark detection | |
================================================ ''' | |
data_dir = out_dir = 'MakeItTalk/examples_cartoon' | |
test_data = sys.argv[1] # for example 'roy_example.png' | |
CH = test_data[:-4] | |
use_gt_bb = False | |
if(not os.path.exists(os.path.join(data_dir, CH + '.pts'))): | |
from thirdparty.face_of_art.menpo_functions import * | |
from thirdparty.face_of_art.deep_heatmaps_model_fusion_net import DeepHeatmapsModel | |
model_path = 'MakeItTalk/examples/ckpt/deep_heatmaps-60000' # model for estimation stage | |
pdm_path = 'thirdparty/face_of_art/pdm_clm_models/pdm_models/' # models for correction stage | |
clm_path = 'thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_all' # model for tuning stage | |
outline_tune = True # if true use tuning stage on eyebrows+jaw, else use tuning stage on jaw only | |
map_landmarks_to_original_image = True # if True, landmark predictions will be mapped to match original | |
# input image size. otherwise the predicted landmarks will match the cropped version (256x256) of the images | |
# load images | |
bb_dir = os.path.join(data_dir, 'Bounding_Boxes') | |
bb_dictionary = load_bb_dictionary(bb_dir, mode='TEST', test_data=test_data) | |
bb_type = 'init' | |
img_list = load_menpo_image_list( | |
img_dir=data_dir, test_data=test_data, train_crop_dir=data_dir, img_dir_ns=data_dir, bb_type=bb_type, | |
bb_dictionary=bb_dictionary, mode='TEST', return_transform=map_landmarks_to_original_image) | |
# load model | |
heatmap_model = DeepHeatmapsModel( | |
mode='TEST', img_path=data_dir, test_model_path=model_path, test_data=test_data, menpo_verbose=False) | |
print ("\npredicting landmarks for: "+os.path.join(data_dir, test_data)) | |
print ("\nsaving landmarks to: "+out_dir) | |
for i, img in enumerate(img_list): | |
if i == 0: | |
reuse = None | |
else: | |
reuse = True | |
preds = heatmap_model.get_landmark_predictions(img_list=[img], pdm_models_dir=pdm_path, clm_model_path=clm_path, | |
reuse=reuse, map_to_input_size=map_landmarks_to_original_image) | |
if map_landmarks_to_original_image: | |
img = img[0] | |
if outline_tune: | |
pred_lms = preds['ECpTp_out'] | |
else: | |
pred_lms = preds['ECpTp_jaw'] | |
mio.export_landmark_file(PointCloud(pred_lms[0]), os.path.join(out_dir, img.path.stem + '.pts'), | |
overwrite=True) | |
print ("\nFOA landmark detection DONE!") | |
''' ==================================================================== | |
opencv vis and refine landmark | |
1. visualize the automatic detection result from FOA approach | |
2. click on landmarks and move them if they are not correct | |
Press Q to save landmarks and continue. | |
==================================================================== ''' | |
import cv2 | |
import numpy as np | |
import os | |
if(os.path.exists(os.path.join(data_dir, CH + '_face_open_mouth.txt'))): | |
pts0 = np.loadtxt(os.path.join(data_dir, CH + '_face_open_mouth.txt')) | |
pts0 = pts0[:, 0:2] | |
else: | |
f = open(os.path.join(data_dir, test_data[:-4] + '.pts'), 'r') | |
lines = f.readlines() | |
pts = [] | |
for i in range(3, 3+68): | |
line = lines[i] | |
line = line[:-1].split(' ') | |
pts += [float(item) for item in line] | |
pts0 = np.array(pts).reshape((68, 2)) | |
pts = np.copy(pts0) | |
img0 = cv2.imread(os.path.join(data_dir, test_data)) | |
img = np.copy(img0) | |
node = -1 | |
def click_adjust_wireframe(event, x, y, flags, param): | |
global img, pts, node | |
def update_img(node, button_up=False): | |
global img, pts | |
# update carton points object and get fresh pts list | |
pts[node, 0], pts[node, 1] = x, y | |
img = np.copy(img0) | |
draw_landmarks(img, pts) | |
# zoom-in feature | |
if (not button_up): | |
zoom_in_scale = 2 | |
zoom_in_box_size = int(150 / zoom_in_scale) | |
zoom_in_range = int(np.min([zoom_in_box_size, x, y, | |
(img.shape[0] - y) / 2 / zoom_in_scale, | |
(img.shape[1] - x) / 2 / zoom_in_scale])) | |
img_zoom_in = img[y - zoom_in_range:y + zoom_in_range, | |
x - zoom_in_range:x + zoom_in_range].copy() | |
img_zoom_in = cv2.resize(img_zoom_in, (0, 0), fx=zoom_in_scale, | |
fy=zoom_in_scale) | |
cv2.drawMarker(img_zoom_in, (zoom_in_range * zoom_in_scale, | |
zoom_in_range * zoom_in_scale), | |
(0, 0, 255), | |
markerType=cv2.MARKER_CROSS, markerSize=30, | |
thickness=2, line_type=cv2.LINE_AA) | |
height, width, depth = np.shape(img_zoom_in) | |
img[y:y + height, x:x + width] = img_zoom_in | |
cv2.rectangle(img, (x, y), (x + height, y + width), | |
(0, 0, 255), thickness=2) | |
if event == cv2.EVENT_LBUTTONDOWN: | |
# search for nearest point | |
node = closest_node((x, y), pts) | |
if(node >=0): | |
update_img(node) | |
if event == cv2.EVENT_LBUTTONUP: | |
node = closest_node((x, y), pts) | |
if (node >= 0): | |
update_img(node, button_up=True) | |
node = -1 | |
if event == cv2.EVENT_MOUSEMOVE: | |
# redraw figure | |
if (node != -1): | |
update_img(node) | |
draw_landmarks(img, pts) | |
cv2.namedWindow("img", cv2.WINDOW_NORMAL) | |
cv2.setMouseCallback("img", click_adjust_wireframe) | |
while(True): | |
cv2.imshow('img', img) | |
key = cv2.waitKey(1) | |
if key == ord("q"): | |
break | |
cv2.destroyAllWindows() | |
print('vis and refine landmark Done!') | |
pts = np.concatenate([pts, np.ones((68, 1))], axis=1) | |
np.savetxt(os.path.join(data_dir, '{}_face_open_mouth.txt'.format(CH)), pts, fmt='%.4f') | |
''' ================================================================= | |
find closed mouth landmark and normalize | |
Input: param are used to change closed mouth strength | |
param[0]: larger -> outer-upper lip higher | |
param[1]: larger -> outer-lower lip higher | |
param[2]: larger -> inner-upper lip higher | |
param[3]: larger -> inner-lower lip higher | |
Output: saved as CH_face_open_mouth_norm.txt | |
CH_scale_shift.txt | |
CH_face_close_mouth.txt | |
Press Q or close the image window to continue. | |
================================================================= ''' | |
norm_anno(data_dir, CH, param=[0.7, 0.4, 0.5, 0.5], show=True) | |
''' ================================================================= | |
delauney tri | |
Input: INNER_ONLY indicates whether use the inner lip landmarks only | |
Output: saved as CH_delauney_tri.txt | |
Press any key to continue. | |
================================================================= ''' | |
delauney_tri(data_dir, test_data, INNER_ONLY=False) | |