markqiu's picture
Upload folder using huggingface_hub
cd36062
import time
import gradio
import numpy as np
import torch
from transformers import LogitsProcessor
from modules import html_generator, shared
params = {
'active': True,
'color_by_perplexity': False,
'color_by_probability': False,
'ppl_scale': 15.0, # No slider for this right now, because I don't think it really needs to be changed. Very large perplexity scores don't show up often.
'probability_dropdown': False,
'verbose': False # For debugging mostly
}
class PerplexityLogits(LogitsProcessor):
def __init__(self, verbose=False):
self.generated_token_ids = []
self.selected_probs = []
self.top_token_ids_list = []
self.top_probs_list = []
self.perplexities_list = []
self.last_probs = None
self.verbose = verbose
def __call__(self, input_ids, scores):
# t0 = time.time()
probs = torch.softmax(scores, dim=-1, dtype=torch.float)
log_probs = torch.nan_to_num(torch.log(probs)) # Note: This is to convert log(0) nan to 0, but probs*log_probs makes this 0 not affect the perplexity.
entropy = -torch.sum(probs * log_probs)
entropy = entropy.cpu().numpy()
perplexity = round(float(np.exp(entropy)), 4)
self.perplexities_list.append(perplexity)
last_token_id = int(input_ids[0][-1].cpu().numpy().item())
# Store the generated tokens (not sure why this isn't accessible in the output endpoint!)
self.generated_token_ids.append(last_token_id)
# Get last probability, and add to the list if it wasn't there
if len(self.selected_probs) > 0:
# Is the selected token in the top tokens?
if self.verbose:
print('Probs: Token after', shared.tokenizer.decode(last_token_id))
print('Probs:', [shared.tokenizer.decode(token_id) for token_id in self.top_token_ids_list[-1][0]])
print('Probs:', [round(float(prob), 4) for prob in self.top_probs_list[-1][0]])
if last_token_id in self.top_token_ids_list[-1][0]:
idx = self.top_token_ids_list[-1][0].index(last_token_id)
self.selected_probs.append(self.top_probs_list[-1][0][idx])
else:
self.top_token_ids_list[-1][0].append(last_token_id)
last_prob = round(float(self.last_probs[last_token_id]), 4)
self.top_probs_list[-1][0].append(last_prob)
self.selected_probs.append(last_prob)
else:
self.selected_probs.append(1.0) # Placeholder for the last token of the prompt
if self.verbose:
pplbar = "-"
if not np.isnan(perplexity):
pplbar = "*" * round(perplexity)
print(f"PPL: Token after {shared.tokenizer.decode(last_token_id)}\t{perplexity:.2f}\t{pplbar}")
# Get top 5 probabilities
top_tokens_and_probs = torch.topk(probs, 5)
top_probs = top_tokens_and_probs.values.cpu().numpy().astype(float).tolist()
top_token_ids = top_tokens_and_probs.indices.cpu().numpy().astype(int).tolist()
self.top_token_ids_list.append(top_token_ids)
self.top_probs_list.append(top_probs)
probs = probs.cpu().numpy().flatten()
self.last_probs = probs # Need to keep this as a reference for top probs
# t1 = time.time()
# print(f"PPL Processor: {(t1-t0):.3f} s")
# About 1 ms, though occasionally up to around 100 ms, not sure why...
# Doesn't actually modify the logits!
return scores
# Stores the perplexity and top probabilities
ppl_logits_processor = None
def logits_processor_modifier(logits_processor_list, input_ids):
global ppl_logits_processor
if params['active']:
ppl_logits_processor = PerplexityLogits(verbose=params['verbose'])
logits_processor_list.append(ppl_logits_processor)
def output_modifier(text):
global ppl_logits_processor
# t0 = time.time()
if not params['active']:
return text
# TODO: It's probably more efficient to do this above rather than modifying all these lists
# Remove last element of perplexities_list, top_token_ids_list, top_tokens_list, top_probs_list since everything is off by one because this extension runs before generation
perplexities = ppl_logits_processor.perplexities_list[:-1]
top_token_ids_list = ppl_logits_processor.top_token_ids_list[:-1]
top_tokens_list = [[shared.tokenizer.decode(token_id) for token_id in top_token_ids[0]] for top_token_ids in top_token_ids_list]
top_probs_list = ppl_logits_processor.top_probs_list[:-1]
# Remove first element of generated_token_ids, generated_tokens, selected_probs because they are for the last token of the prompt
gen_token_ids = ppl_logits_processor.generated_token_ids[1:]
gen_tokens = [shared.tokenizer.decode(token_id) for token_id in gen_token_ids]
sel_probs = ppl_logits_processor.selected_probs[1:]
end_part = '</div></div>' if params['probability_dropdown'] else '</span>' # Helps with finding the index after replacing part of the text.
i = 0
for token, prob, ppl, top_tokens, top_probs in zip(gen_tokens, sel_probs, perplexities, top_tokens_list, top_probs_list):
color = 'ffffff'
if params['color_by_probability'] and params['color_by_perplexity']:
color = probability_perplexity_color_scale(prob, ppl)
elif params['color_by_perplexity']:
color = perplexity_color_scale(ppl)
elif params['color_by_probability']:
color = probability_color_scale(prob)
if token in text[i:]:
if params['probability_dropdown']:
text = text[:i] + text[i:].replace(token, add_dropdown_html(token, color, top_tokens, top_probs[0], ppl), 1)
else:
text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1)
i += text[i:].find(end_part) + len(end_part)
# Use full perplexity list for calculating the average here.
print('Average perplexity:', round(np.mean(ppl_logits_processor.perplexities_list[:-1]), 4))
# t1 = time.time()
# print(f"Modifier: {(t1-t0):.3f} s")
# About 50 ms
return text
def probability_color_scale(prob):
'''
Green-yellow-red color scale
'''
rv = 0
gv = 0
if prob <= 0.5:
rv = 'ff'
gv = hex(int(255 * prob * 2))[2:]
if len(gv) < 2:
gv = '0' * (2 - len(gv)) + gv
else:
rv = hex(int(255 - 255 * (prob - 0.5) * 2))[2:]
gv = 'ff'
if len(rv) < 2:
rv = '0' * (2 - len(rv)) + rv
return rv + gv + '00'
def perplexity_color_scale(ppl):
'''
Red component only, white for 0 perplexity (sorry if you're not in dark mode)
'''
value = hex(max(int(255.0 - params['ppl_scale'] * (float(ppl) - 1.0)), 0))[2:]
if len(value) < 2:
value = '0' * (2 - len(value)) + value
return 'ff' + value + value
def probability_perplexity_color_scale(prob, ppl):
'''
Green-yellow-red for probability and blue component for perplexity
'''
rv = 0
gv = 0
bv = hex(min(max(int(params['ppl_scale'] * (float(ppl) - 1.0)), 0), 255))[2:]
if len(bv) < 2:
bv = '0' * (2 - len(bv)) + bv
if prob <= 0.5:
rv = 'ff'
gv = hex(int(255 * prob * 2))[2:]
if len(gv) < 2:
gv = '0' * (2 - len(gv)) + gv
else:
rv = hex(int(255 - 255 * (prob - 0.5) * 2))[2:]
gv = 'ff'
if len(rv) < 2:
rv = '0' * (2 - len(rv)) + rv
return rv + gv + bv
def add_color_html(token, color):
return f'<span style="color: #{color}">{token}</span>'
# TODO: Major issue: Applying this to too many tokens will cause a permanent slowdown in generation speed until the messages are removed from the history.
# I think the issue is from HTML elements taking up space in the visible history, and things like history deepcopy add latency proportional to the size of the history.
# Potential solution is maybe to modify the main generation code to send just the internal text and not the visible history, to avoid moving too much around.
# I wonder if we can also avoid using deepcopy here.
def add_dropdown_html(token, color, top_tokens, top_probs, perplexity=0):
html = f'<div class="hoverable"><span style="color: #{color}">{token}</span><div class="dropdown"><table class="dropdown-content"><tbody>'
for token_option, prob in zip(top_tokens, top_probs):
# TODO: Bold for selected token?
# Using divs prevented the problem of divs inside spans causing issues.
# Now the problem is that divs show the same whitespace of one space between every token.
# There is probably some way to fix this in CSS that I don't know about.
row_color = probability_color_scale(prob)
row_class = ' class="selected"' if token_option == token else ''
html += f'<tr{row_class}><td style="color: #{row_color}">{token_option}</td><td style="color: #{row_color}">{prob:.4f}</td></tr>'
if perplexity != 0:
ppl_color = perplexity_color_scale(perplexity)
html += f'<tr><td>Perplexity:</td><td style="color: #{ppl_color}">{perplexity:.4f}</td></tr>'
html += '</tbody></table></div></div>'
return html # About 750 characters per token...
def custom_css():
return """
.dropdown {
display: none;
position: absolute;
z-index: 50;
background-color: var(--block-background-fill);
box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
width: max-content;
overflow: visible;
padding: 5px;
border-radius: 10px;
border: 1px solid var(--border-color-primary);
}
.dropdown-content {
border: none;
z-index: 50;
}
.dropdown-content tr.selected {
background-color: var(--block-label-background-fill);
}
.dropdown-content td {
color: var(--body-text-color);
}
.hoverable {
color: var(--body-text-color);
position: relative;
display: inline-block;
overflow: visible;
font-size: 15px;
line-height: 1.75;
margin: 0;
padding: 0;
}
.hoverable:hover .dropdown {
display: block;
}
pre {
white-space: pre-wrap;
}
# TODO: This makes the hover menus extend outside the bounds of the chat area, which is good.
# However, it also makes the scrollbar disappear, which is bad.
# The scroll bar needs to still be present. So for now, we can't see dropdowns that extend past the edge of the chat area.
#.chat {
# overflow-y: auto;
#}
"""
# Monkeypatch applied to html_generator.py
# We simply don't render markdown into HTML. We wrap everything in <pre> tags to preserve whitespace
# formatting. If you're coloring tokens by perplexity or probability, or especially if you're using
# the probability dropdown, you probably care more about seeing the tokens the model actually outputted
# rather than rendering ```code blocks``` or *italics*.
def convert_to_markdown(string):
return '<pre>' + string + '</pre>'
html_generator.convert_to_markdown = convert_to_markdown
def ui():
def update_active_check(x):
params.update({'active': x})
def update_color_by_ppl_check(x):
params.update({'color_by_perplexity': x})
def update_color_by_prob_check(x):
params.update({'color_by_probability': x})
def update_prob_dropdown_check(x):
params.update({'probability_dropdown': x})
active_check = gradio.Checkbox(value=True, label="Compute probabilities and perplexity scores", info="Activate this extension. Note that this extension currently does not work with exllama or llama.cpp.")
color_by_ppl_check = gradio.Checkbox(value=False, label="Color by perplexity", info="Higher perplexity is more red. If also showing probability, higher perplexity has more blue component.")
color_by_prob_check = gradio.Checkbox(value=False, label="Color by probability", info="Green-yellow-red linear scale, with 100% green, 50% yellow, 0% red.")
prob_dropdown_check = gradio.Checkbox(value=False, label="Probability dropdown", info="Hover over a token to show a dropdown of top token probabilities. Currently slightly buggy with whitespace between tokens.")
active_check.change(update_active_check, active_check, None)
color_by_ppl_check.change(update_color_by_ppl_check, color_by_ppl_check, None)
color_by_prob_check.change(update_color_by_prob_check, color_by_prob_check, None)
prob_dropdown_check.change(update_prob_dropdown_check, prob_dropdown_check, None)