Spaces:
Sleeping
Sleeping
Tuchuanhuhuhu
commited on
Commit
·
93def2f
1
Parent(s):
f8a0305
川虎助理和川虎助理Pro支持流式输出
Browse files- config_example.json +1 -1
- modules/models/ChuanhuAgent.py +31 -8
- modules/models/base_model.py +73 -0
config_example.json
CHANGED
@@ -17,7 +17,7 @@
|
|
17 |
"default_model": "gpt-3.5-turbo", // 默认模型
|
18 |
|
19 |
//川虎助理设置
|
20 |
-
"default_chuanhu_assistant_model": "gpt-4", //川虎助理使用的模型,可选gpt-3.5或者gpt-4
|
21 |
"GOOGLE_CSE_ID": "", //谷歌搜索引擎ID,用于川虎助理Pro模式,获取方式请看 https://stackoverflow.com/questions/37083058/programmatically-searching-google-in-python-using-custom-search
|
22 |
"GOOGLE_API_KEY": "", //谷歌API Key,用于川虎助理Pro模式
|
23 |
"WOLFRAM_ALPHA_APPID": "", //Wolfram Alpha API Key,用于川虎助理Pro模式,获取方式请看 https://products.wolframalpha.com/api/
|
|
|
17 |
"default_model": "gpt-3.5-turbo", // 默认模型
|
18 |
|
19 |
//川虎助理设置
|
20 |
+
"default_chuanhu_assistant_model": "gpt-4", //川虎助理使用的模型,可选gpt-3.5-turbo或者gpt-4
|
21 |
"GOOGLE_CSE_ID": "", //谷歌搜索引擎ID,用于川虎助理Pro模式,获取方式请看 https://stackoverflow.com/questions/37083058/programmatically-searching-google-in-python-using-custom-search
|
22 |
"GOOGLE_API_KEY": "", //谷歌API Key,用于川虎助理Pro模式
|
23 |
"WOLFRAM_ALPHA_APPID": "", //Wolfram Alpha API Key,用于川虎助理Pro模式,获取方式请看 https://products.wolframalpha.com/api/
|
modules/models/ChuanhuAgent.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
from langchain.chains.summarize import load_summarize_chain
|
2 |
-
from langchain import
|
3 |
from langchain.chat_models import ChatOpenAI
|
4 |
-
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from langchain.chains.mapreduce import MapReduceChain
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
from langchain.text_splitter import TokenTextSplitter
|
8 |
from langchain.embeddings import OpenAIEmbeddings
|
@@ -14,14 +12,23 @@ from langchain.agents import AgentType
|
|
14 |
from langchain.docstore.document import Document
|
15 |
from langchain.tools import BaseTool, StructuredTool, Tool, tool
|
16 |
from langchain.callbacks.stdout import StdOutCallbackHandler
|
|
|
17 |
from langchain.callbacks.manager import BaseCallbackManager
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
from pydantic import BaseModel, Field
|
20 |
|
21 |
import requests
|
22 |
from bs4 import BeautifulSoup
|
|
|
|
|
23 |
|
24 |
-
from .base_model import BaseLLMModel
|
25 |
from ..config import default_chuanhu_assistant_model
|
26 |
from ..presets import SUMMARIZE_PROMPT
|
27 |
import logging
|
@@ -40,8 +47,9 @@ class ChuanhuAgent_Client(BaseLLMModel):
|
|
40 |
self.text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
|
41 |
self.api_key = openai_api_key
|
42 |
self.llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name=default_chuanhu_assistant_model)
|
|
|
43 |
PROMPT = PromptTemplate(template=SUMMARIZE_PROMPT, input_variables=["text"])
|
44 |
-
self.summarize_chain = load_summarize_chain(self.
|
45 |
if "Pro" in self.model_name:
|
46 |
self.tools = load_tools(["google-search-results-json", "llm-math", "arxiv", "wikipedia", "wolfram-alpha"], llm=self.llm)
|
47 |
else:
|
@@ -96,13 +104,28 @@ class ChuanhuAgent_Client(BaseLLMModel):
|
|
96 |
# create vectorstore
|
97 |
db = FAISS.from_documents(texts, embeddings)
|
98 |
retriever = db.as_retriever()
|
99 |
-
qa = RetrievalQA.from_chain_type(llm=self.
|
100 |
return qa.run(f"{question} Reply in 中文")
|
101 |
|
102 |
def get_answer_at_once(self):
|
103 |
question = self.history[-1]["content"]
|
104 |
-
manager = BaseCallbackManager(handlers=[StdOutCallbackHandler()])
|
105 |
# llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
|
106 |
-
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True
|
107 |
reply = agent.run(input=f"{question} Reply in 简体中文")
|
108 |
return reply, -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from langchain.chains.summarize import load_summarize_chain
|
2 |
+
from langchain import PromptTemplate, LLMChain
|
3 |
from langchain.chat_models import ChatOpenAI
|
|
|
|
|
4 |
from langchain.prompts import PromptTemplate
|
5 |
from langchain.text_splitter import TokenTextSplitter
|
6 |
from langchain.embeddings import OpenAIEmbeddings
|
|
|
12 |
from langchain.docstore.document import Document
|
13 |
from langchain.tools import BaseTool, StructuredTool, Tool, tool
|
14 |
from langchain.callbacks.stdout import StdOutCallbackHandler
|
15 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
16 |
from langchain.callbacks.manager import BaseCallbackManager
|
17 |
|
18 |
+
from typing import Any, Dict, List, Optional, Union
|
19 |
+
|
20 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
21 |
+
from langchain.input import print_text
|
22 |
+
from langchain.schema import AgentAction, AgentFinish, LLMResult
|
23 |
+
|
24 |
from pydantic import BaseModel, Field
|
25 |
|
26 |
import requests
|
27 |
from bs4 import BeautifulSoup
|
28 |
+
from threading import Thread, Condition
|
29 |
+
from collections import deque
|
30 |
|
31 |
+
from .base_model import BaseLLMModel, CallbackToIterator, ChuanhuCallbackHandler
|
32 |
from ..config import default_chuanhu_assistant_model
|
33 |
from ..presets import SUMMARIZE_PROMPT
|
34 |
import logging
|
|
|
47 |
self.text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
|
48 |
self.api_key = openai_api_key
|
49 |
self.llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name=default_chuanhu_assistant_model)
|
50 |
+
self.cheap_llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name="gpt-3.5-turbo")
|
51 |
PROMPT = PromptTemplate(template=SUMMARIZE_PROMPT, input_variables=["text"])
|
52 |
+
self.summarize_chain = load_summarize_chain(self.cheap_llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
|
53 |
if "Pro" in self.model_name:
|
54 |
self.tools = load_tools(["google-search-results-json", "llm-math", "arxiv", "wikipedia", "wolfram-alpha"], llm=self.llm)
|
55 |
else:
|
|
|
104 |
# create vectorstore
|
105 |
db = FAISS.from_documents(texts, embeddings)
|
106 |
retriever = db.as_retriever()
|
107 |
+
qa = RetrievalQA.from_chain_type(llm=self.cheap_llm, chain_type="stuff", retriever=retriever)
|
108 |
return qa.run(f"{question} Reply in 中文")
|
109 |
|
110 |
def get_answer_at_once(self):
|
111 |
question = self.history[-1]["content"]
|
|
|
112 |
# llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
|
113 |
+
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
|
114 |
reply = agent.run(input=f"{question} Reply in 简体中文")
|
115 |
return reply, -1
|
116 |
+
|
117 |
+
def get_answer_stream_iter(self):
|
118 |
+
question = self.history[-1]["content"]
|
119 |
+
it = CallbackToIterator()
|
120 |
+
manager = BaseCallbackManager(handlers=[ChuanhuCallbackHandler(it.callback)])
|
121 |
+
def thread_func():
|
122 |
+
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, callback_manager=manager)
|
123 |
+
reply = agent.run(input=f"{question} Reply in 简体中文")
|
124 |
+
it.callback(reply)
|
125 |
+
it.finish()
|
126 |
+
t = Thread(target=thread_func)
|
127 |
+
t.start()
|
128 |
+
partial_text = ""
|
129 |
+
for value in it:
|
130 |
+
partial_text += value
|
131 |
+
yield partial_text
|
modules/models/base_model.py
CHANGED
@@ -18,12 +18,85 @@ import asyncio
|
|
18 |
import aiohttp
|
19 |
from enum import Enum
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
from ..presets import *
|
22 |
from ..index_func import *
|
23 |
from ..utils import *
|
24 |
from .. import shared
|
25 |
from ..config import retrieve_proxy
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
class ModelType(Enum):
|
29 |
Unknown = -1
|
|
|
18 |
import aiohttp
|
19 |
from enum import Enum
|
20 |
|
21 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
22 |
+
from langchain.callbacks.manager import BaseCallbackManager
|
23 |
+
|
24 |
+
from typing import Any, Dict, List, Optional, Union
|
25 |
+
|
26 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
27 |
+
from langchain.input import print_text
|
28 |
+
from langchain.schema import AgentAction, AgentFinish, LLMResult
|
29 |
+
from threading import Thread, Condition
|
30 |
+
from collections import deque
|
31 |
+
|
32 |
from ..presets import *
|
33 |
from ..index_func import *
|
34 |
from ..utils import *
|
35 |
from .. import shared
|
36 |
from ..config import retrieve_proxy
|
37 |
|
38 |
+
class CallbackToIterator:
|
39 |
+
def __init__(self):
|
40 |
+
self.queue = deque()
|
41 |
+
self.cond = Condition()
|
42 |
+
self.finished = False
|
43 |
+
|
44 |
+
def callback(self, result):
|
45 |
+
with self.cond:
|
46 |
+
self.queue.append(result)
|
47 |
+
self.cond.notify() # Wake up the generator.
|
48 |
+
|
49 |
+
def __iter__(self):
|
50 |
+
return self
|
51 |
+
|
52 |
+
def __next__(self):
|
53 |
+
with self.cond:
|
54 |
+
while not self.queue and not self.finished: # Wait for a value to be added to the queue.
|
55 |
+
self.cond.wait()
|
56 |
+
if not self.queue:
|
57 |
+
raise StopIteration()
|
58 |
+
return self.queue.popleft()
|
59 |
+
|
60 |
+
def finish(self):
|
61 |
+
with self.cond:
|
62 |
+
self.finished = True
|
63 |
+
self.cond.notify() # Wake up the generator if it's waiting.
|
64 |
+
|
65 |
+
class ChuanhuCallbackHandler(BaseCallbackHandler):
|
66 |
+
|
67 |
+
def __init__(self, callback) -> None:
|
68 |
+
"""Initialize callback handler."""
|
69 |
+
self.callback = callback
|
70 |
+
|
71 |
+
def on_agent_action(
|
72 |
+
self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
|
73 |
+
) -> Any:
|
74 |
+
self.callback(action.log)
|
75 |
+
|
76 |
+
def on_tool_end(
|
77 |
+
self,
|
78 |
+
output: str,
|
79 |
+
color: Optional[str] = None,
|
80 |
+
observation_prefix: Optional[str] = None,
|
81 |
+
llm_prefix: Optional[str] = None,
|
82 |
+
**kwargs: Any,
|
83 |
+
) -> None:
|
84 |
+
"""If not the final action, print out observation."""
|
85 |
+
if observation_prefix is not None:
|
86 |
+
self.callback(f"\n\n{observation_prefix}")
|
87 |
+
self.callback(output)
|
88 |
+
if llm_prefix is not None:
|
89 |
+
self.callback(f"\n\n{llm_prefix}")
|
90 |
+
|
91 |
+
def on_agent_finish(
|
92 |
+
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
|
93 |
+
) -> None:
|
94 |
+
self.callback(f"{finish.log}\n\n")
|
95 |
+
|
96 |
+
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
97 |
+
"""Run on new LLM token. Only available when streaming is enabled."""
|
98 |
+
self.callback(token)
|
99 |
+
|
100 |
|
101 |
class ModelType(Enum):
|
102 |
Unknown = -1
|