Spaces:
Sleeping
Sleeping
# -*- coding:utf-8 -*- | |
from __future__ import annotations | |
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type | |
import logging | |
import json | |
import gradio as gr | |
# import openai | |
import os | |
import traceback | |
import requests | |
# import markdown | |
import csv | |
import mdtex2html | |
from pypinyin import lazy_pinyin | |
from presets import * | |
import tiktoken | |
from tqdm import tqdm | |
import colorama | |
from duckduckgo_search import ddg | |
import datetime | |
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s") | |
if TYPE_CHECKING: | |
from typing import TypedDict | |
class DataframeData(TypedDict): | |
headers: List[str] | |
data: List[List[str | int | bool]] | |
initial_prompt = "You are a helpful assistant." | |
API_URL = "https://api.openai.com/v1/chat/completions" | |
HISTORY_DIR = "history" | |
TEMPLATES_DIR = "templates" | |
def postprocess( | |
self, y: List[Tuple[str | None, str | None]] | |
) -> List[Tuple[str | None, str | None]]: | |
""" | |
Parameters: | |
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. | |
Returns: | |
List of tuples representing the message and response. Each message and response will be a string of HTML. | |
""" | |
if y is None: | |
return [] | |
for i, (message, response) in enumerate(y): | |
y[i] = ( | |
# None if message is None else markdown.markdown(message), | |
# None if response is None else markdown.markdown(response), | |
None if message is None else message, | |
None if response is None else mdtex2html.convert(response, extensions=['fenced_code','codehilite','tables']), | |
) | |
return y | |
def count_token(message): | |
encoding = tiktoken.get_encoding("cl100k_base") | |
input_str = f"role: {message['role']}, content: {message['content']}" | |
length = len(encoding.encode(input_str)) | |
return length | |
def parse_text(text): | |
in_code_block = False | |
new_lines = [] | |
for i,line in enumerate(text.split("\n")): | |
if line.strip().startswith("```"): | |
in_code_block = not in_code_block | |
if in_code_block: | |
if line.strip() != "": | |
new_lines.append(line) | |
else: | |
new_lines.append(line) | |
if in_code_block: | |
new_lines.append("```") | |
text = "\n".join(new_lines) | |
return text | |
def construct_text(role, text): | |
return {"role": role, "content": text} | |
def construct_user(text): | |
return construct_text("user", text) | |
def construct_system(text): | |
return construct_text("system", text) | |
def construct_assistant(text): | |
return construct_text("assistant", text) | |
def construct_token_message(token, stream=False): | |
return f"Token 计数: {token}" | |
def get_response( | |
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model | |
): | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openai_api_key}", | |
} | |
history = [construct_system(system_prompt), *history] | |
payload = { | |
"model": selected_model, | |
"messages": history, # [{"role": "user", "content": f"{inputs}"}], | |
"temperature": temperature, # 1.0, | |
"top_p": top_p, # 1.0, | |
"n": 1, | |
"stream": stream, | |
"presence_penalty": 0, | |
"frequency_penalty": 0, | |
} | |
if stream: | |
timeout = timeout_streaming | |
else: | |
timeout = timeout_all | |
# 获取环境变量中的代理设置 | |
http_proxy = os.environ.get("HTTP_PROXY") or os.environ.get("http_proxy") | |
https_proxy = os.environ.get("HTTPS_PROXY") or os.environ.get("https_proxy") | |
# 如果存在代理设置,使用它们 | |
proxies = {} | |
if http_proxy: | |
logging.info(f"Using HTTP proxy: {http_proxy}") | |
proxies["http"] = http_proxy | |
if https_proxy: | |
logging.info(f"Using HTTPS proxy: {https_proxy}") | |
proxies["https"] = https_proxy | |
# 如果有代理,使用代理发送请求,否则使用默认设置发送请求 | |
if proxies: | |
response = requests.post( | |
API_URL, | |
headers=headers, | |
json=payload, | |
stream=True, | |
timeout=timeout, | |
proxies=proxies, | |
) | |
else: | |
response = requests.post( | |
API_URL, | |
headers=headers, | |
json=payload, | |
stream=True, | |
timeout=timeout, | |
) | |
return response | |
def stream_predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
): | |
def get_return_value(): | |
return chatbot, history, status_text, all_token_counts | |
logging.info("实时回答模式") | |
partial_words = "" | |
counter = 0 | |
status_text = "开始实时传输回答……" | |
history.append(construct_user(inputs)) | |
history.append(construct_assistant("")) | |
chatbot.append((parse_text(inputs), "")) | |
user_token_count = 0 | |
if len(all_token_counts) == 0: | |
system_prompt_token_count = count_token(construct_system(system_prompt)) | |
user_token_count = ( | |
count_token(construct_user(inputs)) + system_prompt_token_count | |
) | |
else: | |
user_token_count = count_token(construct_user(inputs)) | |
all_token_counts.append(user_token_count) | |
logging.info(f"输入token计数: {user_token_count}") | |
yield get_return_value() | |
try: | |
response = get_response( | |
openai_api_key, | |
system_prompt, | |
history, | |
temperature, | |
top_p, | |
True, | |
selected_model, | |
) | |
except requests.exceptions.ConnectTimeout: | |
status_text = ( | |
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt | |
) | |
yield get_return_value() | |
return | |
except requests.exceptions.ReadTimeout: | |
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt | |
yield get_return_value() | |
return | |
yield get_return_value() | |
error_json_str = "" | |
for chunk in tqdm(response.iter_lines()): | |
if counter == 0: | |
counter += 1 | |
continue | |
counter += 1 | |
# check whether each line is non-empty | |
if chunk: | |
chunk = chunk.decode() | |
chunklength = len(chunk) | |
try: | |
chunk = json.loads(chunk[6:]) | |
except json.JSONDecodeError: | |
logging.info(chunk) | |
error_json_str += chunk | |
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}" | |
yield get_return_value() | |
continue | |
# decode each line as response data is in bytes | |
if chunklength > 6 and "delta" in chunk["choices"][0]: | |
finish_reason = chunk["choices"][0]["finish_reason"] | |
status_text = construct_token_message( | |
sum(all_token_counts), stream=True | |
) | |
if finish_reason == "stop": | |
yield get_return_value() | |
break | |
try: | |
partial_words = ( | |
partial_words + chunk["choices"][0]["delta"]["content"] | |
) | |
except KeyError: | |
status_text = ( | |
standard_error_msg | |
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: " | |
+ str(sum(all_token_counts)) | |
) | |
yield get_return_value() | |
break | |
history[-1] = construct_assistant(partial_words) | |
chatbot[-1] = (parse_text(inputs), parse_text(partial_words)) | |
all_token_counts[-1] += 1 | |
yield get_return_value() | |
def predict_all( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
): | |
logging.info("一次性回答模式") | |
history.append(construct_user(inputs)) | |
history.append(construct_assistant("")) | |
chatbot.append((parse_text(inputs), "")) | |
all_token_counts.append(count_token(construct_user(inputs))) | |
try: | |
response = get_response( | |
openai_api_key, | |
system_prompt, | |
history, | |
temperature, | |
top_p, | |
False, | |
selected_model, | |
) | |
except requests.exceptions.ConnectTimeout: | |
status_text = ( | |
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt | |
) | |
return chatbot, history, status_text, all_token_counts | |
except requests.exceptions.ProxyError: | |
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt | |
return chatbot, history, status_text, all_token_counts | |
except requests.exceptions.SSLError: | |
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt | |
return chatbot, history, status_text, all_token_counts | |
response = json.loads(response.text) | |
content = response["choices"][0]["message"]["content"] | |
history[-1] = construct_assistant(content) | |
chatbot[-1] = (parse_text(inputs), parse_text(content)) | |
total_token_count = response["usage"]["total_tokens"] | |
all_token_counts[-1] = total_token_count - sum(all_token_counts) | |
status_text = construct_token_message(total_token_count) | |
return chatbot, history, status_text, all_token_counts | |
def predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
stream=False, | |
selected_model=MODELS[0], | |
use_websearch_checkbox=False, | |
should_check_token_count=True, | |
): # repetition_penalty, top_k | |
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL) | |
if use_websearch_checkbox: | |
results = ddg(inputs, max_results=3) | |
web_results = [] | |
for idx, result in enumerate(results): | |
logging.info(f"搜索结果{idx + 1}:{result}") | |
web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}') | |
web_results = "\n\n".join(web_results) | |
today = datetime.datetime.today().strftime("%Y-%m-%d") | |
inputs = ( | |
websearch_prompt.replace("{current_date}", today) | |
.replace("{query}", inputs) | |
.replace("{web_results}", web_results) | |
) | |
if len(openai_api_key) != 51: | |
status_text = standard_error_msg + no_apikey_msg | |
logging.info(status_text) | |
chatbot.append((parse_text(inputs), "")) | |
if len(history) == 0: | |
history.append(construct_user(inputs)) | |
history.append("") | |
all_token_counts.append(0) | |
else: | |
history[-2] = construct_user(inputs) | |
yield chatbot, history, status_text, all_token_counts | |
return | |
if stream: | |
yield chatbot, history, "开始生成回答……", all_token_counts | |
if stream: | |
logging.info("使用流式传输") | |
iter = stream_predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
) | |
for chatbot, history, status_text, all_token_counts in iter: | |
yield chatbot, history, status_text, all_token_counts | |
else: | |
logging.info("不使用流式传输") | |
chatbot, history, status_text, all_token_counts = predict_all( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
) | |
yield chatbot, history, status_text, all_token_counts | |
logging.info(f"传输完毕。当前token计数为{all_token_counts}") | |
if len(history) > 1 and history[-1]["content"] != inputs: | |
logging.info( | |
"回答为:" | |
+ colorama.Fore.BLUE | |
+ f"{history[-1]['content']}" | |
+ colorama.Style.RESET_ALL | |
) | |
if stream: | |
max_token = max_token_streaming | |
else: | |
max_token = max_token_all | |
if sum(all_token_counts) > max_token and should_check_token_count: | |
status_text = f"精简token中{all_token_counts}/{max_token}" | |
logging.info(status_text) | |
yield chatbot, history, status_text, all_token_counts | |
iter = reduce_token_size( | |
openai_api_key, | |
system_prompt, | |
history, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
stream=False, | |
selected_model=selected_model, | |
hidden=True, | |
) | |
for chatbot, history, status_text, all_token_counts in iter: | |
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}" | |
yield chatbot, history, status_text, all_token_counts | |
def retry( | |
openai_api_key, | |
system_prompt, | |
history, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
stream=False, | |
selected_model=MODELS[0], | |
): | |
logging.info("重试中……") | |
if len(history) == 0: | |
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count | |
return | |
history.pop() | |
inputs = history.pop()["content"] | |
token_count.pop() | |
iter = predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
stream=stream, | |
selected_model=selected_model, | |
) | |
logging.info("重试完毕") | |
for x in iter: | |
yield x | |
def reduce_token_size( | |
openai_api_key, | |
system_prompt, | |
history, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
stream=False, | |
selected_model=MODELS[0], | |
hidden=False, | |
): | |
logging.info("开始减少token数量……") | |
iter = predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
summarize_prompt, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
stream=stream, | |
selected_model=selected_model, | |
should_check_token_count=False, | |
) | |
logging.info(f"chatbot: {chatbot}") | |
for chatbot, history, status_text, previous_token_count in iter: | |
history = history[-2:] | |
token_count = previous_token_count[-1:] | |
if hidden: | |
chatbot.pop() | |
yield chatbot, history, construct_token_message( | |
sum(token_count), stream=stream | |
), token_count | |
logging.info("减少token数量完毕") | |
def delete_last_conversation(chatbot, history, previous_token_count): | |
if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]: | |
logging.info("由于包含报错信息,只删除chatbot记录") | |
chatbot.pop() | |
return chatbot, history | |
if len(history) > 0: | |
logging.info("删除了一组对话历史") | |
history.pop() | |
history.pop() | |
if len(chatbot) > 0: | |
logging.info("删除了一组chatbot对话") | |
chatbot.pop() | |
if len(previous_token_count) > 0: | |
logging.info("删除了一组对话的token计数记录") | |
previous_token_count.pop() | |
return ( | |
chatbot, | |
history, | |
previous_token_count, | |
construct_token_message(sum(previous_token_count)), | |
) | |
def save_file(filename, system, history, chatbot): | |
logging.info("保存对话历史中……") | |
os.makedirs(HISTORY_DIR, exist_ok=True) | |
if filename.endswith(".json"): | |
json_s = {"system": system, "history": history, "chatbot": chatbot} | |
print(json_s) | |
with open(os.path.join(HISTORY_DIR, filename), "w") as f: | |
json.dump(json_s, f) | |
elif filename.endswith(".md"): | |
md_s = f"system: \n- {system} \n" | |
for data in history: | |
md_s += f"\n{data['role']}: \n- {data['content']} \n" | |
with open(os.path.join(HISTORY_DIR, filename), "w", encoding="utf8") as f: | |
f.write(md_s) | |
logging.info("保存对话历史完毕") | |
return os.path.join(HISTORY_DIR, filename) | |
def save_chat_history(filename, system, history, chatbot): | |
if filename == "": | |
return | |
if not filename.endswith(".json"): | |
filename += ".json" | |
return save_file(filename, system, history, chatbot) | |
def export_markdown(filename, system, history, chatbot): | |
if filename == "": | |
return | |
if not filename.endswith(".md"): | |
filename += ".md" | |
return save_file(filename, system, history, chatbot) | |
def load_chat_history(filename, system, history, chatbot): | |
logging.info("加载对话历史中……") | |
if type(filename) != str: | |
filename = filename.name | |
try: | |
with open(os.path.join(HISTORY_DIR, filename), "r") as f: | |
json_s = json.load(f) | |
try: | |
if type(json_s["history"][0]) == str: | |
logging.info("历史记录格式为旧版,正在转换……") | |
new_history = [] | |
for index, item in enumerate(json_s["history"]): | |
if index % 2 == 0: | |
new_history.append(construct_user(item)) | |
else: | |
new_history.append(construct_assistant(item)) | |
json_s["history"] = new_history | |
logging.info(new_history) | |
except: | |
# 没有对话历史 | |
pass | |
logging.info("加载对话历史完毕") | |
return filename, json_s["system"], json_s["history"], json_s["chatbot"] | |
except FileNotFoundError: | |
logging.info("没有找到对话历史文件,不执行任何操作") | |
return filename, system, history, chatbot | |
def sorted_by_pinyin(list): | |
return sorted(list, key=lambda char: lazy_pinyin(char)[0][0]) | |
def get_file_names(dir, plain=False, filetypes=[".json"]): | |
logging.info(f"获取文件名列表,目录为{dir},文件类型为{filetypes},是否为纯文本列表{plain}") | |
files = [] | |
try: | |
for type in filetypes: | |
files += [f for f in os.listdir(dir) if f.endswith(type)] | |
except FileNotFoundError: | |
files = [] | |
files = sorted_by_pinyin(files) | |
if files == []: | |
files = [""] | |
if plain: | |
return files | |
else: | |
return gr.Dropdown.update(choices=files) | |
def get_history_names(plain=False): | |
logging.info("获取历史记录文件名列表") | |
return get_file_names(HISTORY_DIR, plain) | |
def load_template(filename, mode=0): | |
logging.info(f"加载模板文件{filename},模式为{mode}(0为返回字典和下拉菜单,1为返回下拉菜单,2为返回字典)") | |
lines = [] | |
logging.info("Loading template...") | |
if filename.endswith(".json"): | |
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as f: | |
lines = json.load(f) | |
lines = [[i["act"], i["prompt"]] for i in lines] | |
else: | |
with open( | |
os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8" | |
) as csvfile: | |
reader = csv.reader(csvfile) | |
lines = list(reader) | |
lines = lines[1:] | |
if mode == 1: | |
return sorted_by_pinyin([row[0] for row in lines]) | |
elif mode == 2: | |
return {row[0]: row[1] for row in lines} | |
else: | |
choices = sorted_by_pinyin([row[0] for row in lines]) | |
return {row[0]: row[1] for row in lines}, gr.Dropdown.update( | |
choices=choices, value=choices[0] | |
) | |
def get_template_names(plain=False): | |
logging.info("获取模板文件名列表") | |
return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"]) | |
def get_template_content(templates, selection, original_system_prompt): | |
logging.info(f"应用模板中,选择为{selection},原始系统提示为{original_system_prompt}") | |
try: | |
return templates[selection] | |
except: | |
return original_system_prompt | |
def reset_state(): | |
logging.info("重置状态") | |
return [], [], [], construct_token_message(0) | |
def reset_textbox(): | |
return gr.update(value="") | |
def reset_default(): | |
global API_URL | |
API_URL = "https://api.openai.com/v1/chat/completions" | |
os.environ.pop("HTTPS_PROXY", None) | |
os.environ.pop("https_proxy", None) | |
return gr.update(value=API_URL), gr.update(value="") | |
def change_api_url(url): | |
global API_URL | |
API_URL = url | |
logging.info(f"更改API地址为{url}") | |
def change_proxy(proxy): | |
os.environ["HTTPS_PROXY"] = proxy | |
logging.info(f"更改代理为{proxy}") | |