Create ERNIE-Bot-SDK.py
Browse files- ERNIE-Bot-SDK.py +737 -0
ERNIE-Bot-SDK.py
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import time
|
21 |
+
from collections.abc import Iterator
|
22 |
+
from typing import List
|
23 |
+
|
24 |
+
import faiss
|
25 |
+
import gradio as gr
|
26 |
+
import numpy as np
|
27 |
+
import requests
|
28 |
+
from tqdm import tqdm
|
29 |
+
|
30 |
+
import erniebot as eb
|
31 |
+
|
32 |
+
|
33 |
+
def parse_setup_args():
|
34 |
+
parser = argparse.ArgumentParser()
|
35 |
+
parser.add_argument("--port", type=int, default=8073)
|
36 |
+
args = parser.parse_args()
|
37 |
+
return args
|
38 |
+
|
39 |
+
|
40 |
+
def create_ui_and_launch(args):
|
41 |
+
with gr.Blocks(title="ERNIE Bot SDK Demos", theme=gr.themes.Soft()) as blocks:
|
42 |
+
gr.Markdown("# ERNIE Bot SDK基础功能演示")
|
43 |
+
create_chat_completion_tab()
|
44 |
+
create_embedding_tab()
|
45 |
+
create_image_tab()
|
46 |
+
create_rag_tab()
|
47 |
+
|
48 |
+
blocks.launch(server_name="0.0.0.0", server_port=args.port)
|
49 |
+
|
50 |
+
|
51 |
+
def create_chat_completion_tab():
|
52 |
+
def _infer(
|
53 |
+
ernie_model, content, state, top_p, temperature, api_type, access_key, secret_key, access_token
|
54 |
+
):
|
55 |
+
access_key = access_key.strip()
|
56 |
+
secret_key = secret_key.strip()
|
57 |
+
access_token = access_token.strip()
|
58 |
+
|
59 |
+
if (access_key == "" or secret_key == "") and access_token == "":
|
60 |
+
raise gr.Error("需要填写正确的AK/SK或access token,不能为空")
|
61 |
+
if content.strip() == "":
|
62 |
+
raise gr.Error("输入不能为空,请在清空后重试")
|
63 |
+
|
64 |
+
auth_config = {
|
65 |
+
"api_type": api_type,
|
66 |
+
}
|
67 |
+
if access_key:
|
68 |
+
auth_config["ak"] = access_key
|
69 |
+
if secret_key:
|
70 |
+
auth_config["sk"] = secret_key
|
71 |
+
if access_token:
|
72 |
+
auth_config["access_token"] = access_token
|
73 |
+
|
74 |
+
content = content.strip().replace("<br>", "")
|
75 |
+
context = state.setdefault("context", [])
|
76 |
+
context.append({"role": "user", "content": content})
|
77 |
+
data = {
|
78 |
+
"messages": context,
|
79 |
+
"top_p": top_p,
|
80 |
+
"temperature": temperature,
|
81 |
+
}
|
82 |
+
|
83 |
+
if ernie_model == "chat_file":
|
84 |
+
response = eb.ChatFile.create(_config_=auth_config, **data, stream=False)
|
85 |
+
else:
|
86 |
+
response = eb.ChatCompletion.create(
|
87 |
+
_config_=auth_config, model=ernie_model, **data, stream=False
|
88 |
+
)
|
89 |
+
|
90 |
+
bot_response = response.result
|
91 |
+
context.append({"role": "assistant", "content": bot_response})
|
92 |
+
history = _get_history(context)
|
93 |
+
return None, history, context, state
|
94 |
+
|
95 |
+
def _regen_response(
|
96 |
+
ernie_model, state, top_p, temperature, api_type, access_key, secret_key, access_token
|
97 |
+
):
|
98 |
+
"""Regenerate response."""
|
99 |
+
context = state.setdefault("context", [])
|
100 |
+
if len(context) < 2:
|
101 |
+
raise gr.Error("请至少进行一轮对话")
|
102 |
+
context.pop()
|
103 |
+
user_message = context.pop()
|
104 |
+
return _infer(
|
105 |
+
ernie_model,
|
106 |
+
user_message["content"],
|
107 |
+
state,
|
108 |
+
top_p,
|
109 |
+
temperature,
|
110 |
+
api_type,
|
111 |
+
access_key,
|
112 |
+
secret_key,
|
113 |
+
access_token,
|
114 |
+
)
|
115 |
+
|
116 |
+
def _rollback(state):
|
117 |
+
"""Roll back context."""
|
118 |
+
context = state.setdefault("context", [])
|
119 |
+
content = context[-2]["content"]
|
120 |
+
context = context[:-2]
|
121 |
+
state["context"] = context
|
122 |
+
history = _get_history(context)
|
123 |
+
return content, history, context, state
|
124 |
+
|
125 |
+
def _get_history(context):
|
126 |
+
history = []
|
127 |
+
for turn_idx in range(0, len(context), 2):
|
128 |
+
history.append([context[turn_idx]["content"], context[turn_idx + 1]["content"]])
|
129 |
+
|
130 |
+
return history
|
131 |
+
|
132 |
+
with gr.Tab("对话补全(Chat Completion)") as chat_completion_tab:
|
133 |
+
with gr.Row():
|
134 |
+
with gr.Column(scale=1):
|
135 |
+
api_type = gr.Dropdown(
|
136 |
+
label="API Type", info="提供对话能力的后端平台", value="qianfan", choices=["qianfan", "aistudio"]
|
137 |
+
)
|
138 |
+
access_key = gr.Textbox(
|
139 |
+
label="AK", info="用于访问后端平台的AK,如果设置了access token则无需设置此参数", type="password"
|
140 |
+
)
|
141 |
+
secret_key = gr.Textbox(
|
142 |
+
label="SK", info="用于访问后端平台的SK,如果设置了access token则无需设置此参数", type="password"
|
143 |
+
)
|
144 |
+
access_token = gr.Textbox(
|
145 |
+
label="Access Token", info="用于��问后端平台的access token,如果设置了AK、SK则无需设置此参数", type="password"
|
146 |
+
)
|
147 |
+
ernie_model = gr.Dropdown(
|
148 |
+
label="Model", info="模型类型", value="ernie-bot", choices=["ernie-bot", "ernie-bot-turbo"]
|
149 |
+
)
|
150 |
+
top_p = gr.Slider(
|
151 |
+
label="Top-p", info="控制采样范围,该参数越小生成结果越稳定", value=0.7, minimum=0, maximum=1, step=0.05
|
152 |
+
)
|
153 |
+
temperature = gr.Slider(
|
154 |
+
label="Temperature",
|
155 |
+
info="控制采样随机性,该参数越小生成结果越稳定",
|
156 |
+
value=0.95,
|
157 |
+
minimum=0.05,
|
158 |
+
maximum=1,
|
159 |
+
step=0.05,
|
160 |
+
)
|
161 |
+
with gr.Column(scale=4):
|
162 |
+
state = gr.State({})
|
163 |
+
context_chatbot = gr.Chatbot(label="对话历史")
|
164 |
+
input_text = gr.Textbox(label="消息内容", placeholder="请输入...")
|
165 |
+
with gr.Row():
|
166 |
+
clear_btn = gr.Button("清空")
|
167 |
+
rollback_btn = gr.Button("撤回")
|
168 |
+
regen_btn = gr.Button("重新生成")
|
169 |
+
send_btn = gr.Button("发送")
|
170 |
+
raw_context_json = gr.JSON(label="原始对话上下文信息")
|
171 |
+
|
172 |
+
api_type.change(
|
173 |
+
lambda api_type: {
|
174 |
+
"qianfan": (gr.update(visible=True), gr.update(visible=True)),
|
175 |
+
"aistudio": (gr.update(visible=False), gr.update(visible=False)),
|
176 |
+
}[api_type],
|
177 |
+
inputs=api_type,
|
178 |
+
outputs=[
|
179 |
+
access_key,
|
180 |
+
secret_key,
|
181 |
+
],
|
182 |
+
)
|
183 |
+
chat_completion_tab.select(
|
184 |
+
lambda: (None, None, None, {}),
|
185 |
+
outputs=[
|
186 |
+
input_text,
|
187 |
+
context_chatbot,
|
188 |
+
raw_context_json,
|
189 |
+
state,
|
190 |
+
],
|
191 |
+
)
|
192 |
+
input_text.submit(
|
193 |
+
_infer,
|
194 |
+
inputs=[
|
195 |
+
ernie_model,
|
196 |
+
input_text,
|
197 |
+
state,
|
198 |
+
top_p,
|
199 |
+
temperature,
|
200 |
+
api_type,
|
201 |
+
access_key,
|
202 |
+
secret_key,
|
203 |
+
access_token,
|
204 |
+
],
|
205 |
+
outputs=[
|
206 |
+
input_text,
|
207 |
+
context_chatbot,
|
208 |
+
raw_context_json,
|
209 |
+
state,
|
210 |
+
],
|
211 |
+
)
|
212 |
+
clear_btn.click(
|
213 |
+
lambda _: (None, None, None, {}),
|
214 |
+
inputs=clear_btn,
|
215 |
+
outputs=[
|
216 |
+
input_text,
|
217 |
+
context_chatbot,
|
218 |
+
raw_context_json,
|
219 |
+
state,
|
220 |
+
],
|
221 |
+
show_progress=False,
|
222 |
+
)
|
223 |
+
rollback_btn.click(
|
224 |
+
_rollback,
|
225 |
+
inputs=[state],
|
226 |
+
outputs=[
|
227 |
+
input_text,
|
228 |
+
context_chatbot,
|
229 |
+
raw_context_json,
|
230 |
+
state,
|
231 |
+
],
|
232 |
+
show_progress=False,
|
233 |
+
)
|
234 |
+
regen_btn.click(
|
235 |
+
_regen_response,
|
236 |
+
inputs=[
|
237 |
+
ernie_model,
|
238 |
+
state,
|
239 |
+
top_p,
|
240 |
+
temperature,
|
241 |
+
api_type,
|
242 |
+
access_key,
|
243 |
+
secret_key,
|
244 |
+
access_token,
|
245 |
+
],
|
246 |
+
outputs=[
|
247 |
+
input_text,
|
248 |
+
context_chatbot,
|
249 |
+
raw_context_json,
|
250 |
+
state,
|
251 |
+
],
|
252 |
+
)
|
253 |
+
send_btn.click(
|
254 |
+
_infer,
|
255 |
+
inputs=[
|
256 |
+
ernie_model,
|
257 |
+
input_text,
|
258 |
+
state,
|
259 |
+
top_p,
|
260 |
+
temperature,
|
261 |
+
api_type,
|
262 |
+
access_key,
|
263 |
+
secret_key,
|
264 |
+
access_token,
|
265 |
+
],
|
266 |
+
outputs=[
|
267 |
+
input_text,
|
268 |
+
context_chatbot,
|
269 |
+
raw_context_json,
|
270 |
+
state,
|
271 |
+
],
|
272 |
+
)
|
273 |
+
|
274 |
+
|
275 |
+
def create_embedding_tab():
|
276 |
+
def _get_embeddings(text1, text2, api_type, access_key, secret_key, access_token):
|
277 |
+
access_key = access_key.strip()
|
278 |
+
secret_key = secret_key.strip()
|
279 |
+
access_token = access_token.strip()
|
280 |
+
|
281 |
+
if (access_key == "" or secret_key == "") and access_token == "":
|
282 |
+
raise gr.Error("需要填写正确的AK/SK或access token,不能为空")
|
283 |
+
|
284 |
+
auth_config = {
|
285 |
+
"api_type": api_type,
|
286 |
+
}
|
287 |
+
if access_key:
|
288 |
+
auth_config["ak"] = access_key
|
289 |
+
if secret_key:
|
290 |
+
auth_config["sk"] = secret_key
|
291 |
+
if access_token:
|
292 |
+
auth_config["access_token"] = access_token
|
293 |
+
|
294 |
+
if text1.strip() == "" or text2.strip() == "":
|
295 |
+
raise gr.Error("两个输入均不能为空")
|
296 |
+
embeddings = eb.Embedding.create(
|
297 |
+
_config_=auth_config,
|
298 |
+
model="ernie-text-embedding",
|
299 |
+
input=[text1.strip(), text2.strip()],
|
300 |
+
)
|
301 |
+
emb_0 = embeddings.rbody["data"][0]["embedding"]
|
302 |
+
emb_1 = embeddings.rbody["data"][1]["embedding"]
|
303 |
+
cos_sim = _calc_cosine_similarity(emb_0, emb_1)
|
304 |
+
cos_sim_text = f"## 两段文本余弦相似度: {cos_sim}"
|
305 |
+
return str(emb_0), str(emb_1), cos_sim_text
|
306 |
+
|
307 |
+
def _calc_cosine_similarity(vec_0, vec_1):
|
308 |
+
dot_result = float(np.dot(vec_0, vec_1))
|
309 |
+
denom = np.linalg.norm(vec_0) * np.linalg.norm(vec_1)
|
310 |
+
return 0.5 + 0.5 * (dot_result / denom) if denom != 0 else 0
|
311 |
+
|
312 |
+
with gr.Tab("语义向量(Embedding)"):
|
313 |
+
gr.Markdown("输入两段文本,分别获取两段文本的向量表示,并计算向量间的余弦相似度")
|
314 |
+
with gr.Row():
|
315 |
+
with gr.Column(scale=1):
|
316 |
+
api_type = gr.Dropdown(
|
317 |
+
label="API Type", info="提供语义向量能力的后端平台", value="qianfan", choices=["qianfan", "aistudio"]
|
318 |
+
)
|
319 |
+
access_key = gr.Textbox(
|
320 |
+
label="AK", info="用于访问后端平台的AK,如果设置了access token则无需设置此参数", type="password"
|
321 |
+
)
|
322 |
+
secret_key = gr.Textbox(
|
323 |
+
label="SK", info="用于访问后端平台的SK,如果设置了access token则无需设置此参数", type="password"
|
324 |
+
)
|
325 |
+
access_token = gr.Textbox(
|
326 |
+
label="Access Token", info="用于访问后端平台的access token,如果设置了AK、SK则无需设置此参数", type="password"
|
327 |
+
)
|
328 |
+
with gr.Column(scale=4):
|
329 |
+
with gr.Row():
|
330 |
+
text1 = gr.Textbox(label="第一段文本", placeholder="输入第一段文本")
|
331 |
+
text2 = gr.Textbox(label="第二段文本", placeholder="输入第二段文本")
|
332 |
+
cal_emb = gr.Button("生成向量")
|
333 |
+
cos_sim = gr.Markdown("## 余弦相似度: -")
|
334 |
+
with gr.Row():
|
335 |
+
embedding1 = gr.Textbox(label="文本1向量结果")
|
336 |
+
embedding2 = gr.Textbox(label="文本2向量结果")
|
337 |
+
|
338 |
+
api_type.change(
|
339 |
+
lambda api_type: {
|
340 |
+
"qianfan": (gr.update(visible=True), gr.update(visible=True)),
|
341 |
+
"aistudio": (gr.update(visible=False), gr.update(visible=False)),
|
342 |
+
}[api_type],
|
343 |
+
inputs=api_type,
|
344 |
+
outputs=[
|
345 |
+
access_key,
|
346 |
+
secret_key,
|
347 |
+
],
|
348 |
+
)
|
349 |
+
cal_emb.click(
|
350 |
+
_get_embeddings,
|
351 |
+
inputs=[
|
352 |
+
text1,
|
353 |
+
text2,
|
354 |
+
api_type,
|
355 |
+
access_key,
|
356 |
+
secret_key,
|
357 |
+
access_token,
|
358 |
+
],
|
359 |
+
outputs=[
|
360 |
+
embedding1,
|
361 |
+
embedding2,
|
362 |
+
cos_sim,
|
363 |
+
],
|
364 |
+
)
|
365 |
+
|
366 |
+
|
367 |
+
def create_image_tab():
|
368 |
+
def _gen_image(prompt, w_and_h, api_type, access_key, secret_key, access_token):
|
369 |
+
access_key = access_key.strip()
|
370 |
+
secret_key = secret_key.strip()
|
371 |
+
access_token = access_token.strip()
|
372 |
+
|
373 |
+
if (access_key == "" or secret_key == "") and access_token == "":
|
374 |
+
raise gr.Error("需要填写正确的AK/SK或access token,不能为空")
|
375 |
+
if prompt.strip() == "":
|
376 |
+
raise gr.Error("输入不能为空")
|
377 |
+
|
378 |
+
auth_config = {
|
379 |
+
"api_type": api_type,
|
380 |
+
}
|
381 |
+
if access_key:
|
382 |
+
auth_config["ak"] = access_key
|
383 |
+
if secret_key:
|
384 |
+
auth_config["sk"] = secret_key
|
385 |
+
if access_token:
|
386 |
+
auth_config["access_token"] = access_token
|
387 |
+
|
388 |
+
timestamp = int(time.time())
|
389 |
+
w, h = [int(x) for x in w_and_h.strip().split("x")]
|
390 |
+
|
391 |
+
response = eb.Image.create(
|
392 |
+
_config_=auth_config,
|
393 |
+
model="ernie-vilg-v2",
|
394 |
+
prompt=prompt,
|
395 |
+
width=w,
|
396 |
+
height=h,
|
397 |
+
version="v2",
|
398 |
+
image_num=1,
|
399 |
+
)
|
400 |
+
img_url = response.data["sub_task_result_list"][0]["final_image_list"][0]["img_url"]
|
401 |
+
res = requests.get(img_url)
|
402 |
+
with open(f"{timestamp}.jpg", "wb") as f:
|
403 |
+
f.write(res.content)
|
404 |
+
return f"{timestamp}.jpg"
|
405 |
+
|
406 |
+
with gr.Tab("文生图(Image Generation)"):
|
407 |
+
with gr.Row():
|
408 |
+
with gr.Column(scale=1):
|
409 |
+
api_type = gr.Dropdown(
|
410 |
+
label="API Type", info="提供文生图能力的后端平台", value="yinian", choices=["yinian"]
|
411 |
+
)
|
412 |
+
access_key = gr.Textbox(
|
413 |
+
label="AK", info="用于访问后端平台的AK,如果设置了access token则无需设置此参数", type="password"
|
414 |
+
)
|
415 |
+
secret_key = gr.Textbox(
|
416 |
+
label="SK", info="用于访问后端平台的SK,如果设置了access token则无需设置此参数", type="password"
|
417 |
+
)
|
418 |
+
access_token = gr.Textbox(
|
419 |
+
label="Access Token", info="用于访问后端平台的access token,如果设置了AK、SK则无需设置此参数", type="password"
|
420 |
+
)
|
421 |
+
with gr.Column(scale=4):
|
422 |
+
with gr.Row():
|
423 |
+
prompt = gr.Textbox(label="Prompt", placeholder="输入用于生成图片的prompt,例如: 生成一朵玫瑰花")
|
424 |
+
w_and_h = gr.Dropdown(
|
425 |
+
label="分辨率",
|
426 |
+
value="512x512",
|
427 |
+
choices=[
|
428 |
+
"512x512",
|
429 |
+
"640x360",
|
430 |
+
"360x640",
|
431 |
+
"1024x1024",
|
432 |
+
"1280x720",
|
433 |
+
"720x1280",
|
434 |
+
"2048x2048",
|
435 |
+
"2560x1440",
|
436 |
+
"1440x2560",
|
437 |
+
],
|
438 |
+
)
|
439 |
+
submit_btn = gr.Button("生成图片")
|
440 |
+
image_show_zone = gr.Image(label="图片生成结果", type="filepath", show_download_button=True)
|
441 |
+
|
442 |
+
submit_btn.click(
|
443 |
+
_gen_image,
|
444 |
+
inputs=[
|
445 |
+
prompt,
|
446 |
+
w_and_h,
|
447 |
+
api_type,
|
448 |
+
access_key,
|
449 |
+
secret_key,
|
450 |
+
access_token,
|
451 |
+
],
|
452 |
+
outputs=image_show_zone,
|
453 |
+
)
|
454 |
+
|
455 |
+
|
456 |
+
def create_rag_tab():
|
457 |
+
REF_HTML = """
|
458 |
+
|
459 |
+
<details style="border: 1px solid #ccc; padding: 10px; border-radius: 4px; margin-bottom: 4px">
|
460 |
+
<summary style="display: flex; align-items: center; font-weight: bold;">
|
461 |
+
<span style="margin-right: 10px;">[{index}] {title}</span>
|
462 |
+
<a style="text-decoration: none; background: none !important;" target="_blank">
|
463 |
+
<!--[Here should be a link icon]-->
|
464 |
+
<i style="border: solid #000; border-width: 0 2px 2px 0; display: inline-block; padding: 3px;
|
465 |
+
transform:rotate(-45deg);-webkit-transform(-45deg)">
|
466 |
+
</i>
|
467 |
+
</a>
|
468 |
+
</summary>
|
469 |
+
<p style="margin-top: 10px;">{text}</p>
|
470 |
+
</details>
|
471 |
+
|
472 |
+
"""
|
473 |
+
|
474 |
+
PROMPT_TEMPLATE = """基于以下已知信息,请简洁并专业地回答用户的问题。
|
475 |
+
如果无法从中得到答案,请说 '根据已知信息无法回答该问题' 或 '没有提供足够的相关信息'。不允许在答案中添加编造成分。
|
476 |
+
你可以参考以下文章:
|
477 |
+
{DOCS}
|
478 |
+
问题:{QUERY}
|
479 |
+
回答:"""
|
480 |
+
|
481 |
+
_CONFIG = {
|
482 |
+
"ernie_model": "",
|
483 |
+
"api_type": "",
|
484 |
+
"AK": "",
|
485 |
+
"SK": "",
|
486 |
+
"access_token": "",
|
487 |
+
"top_p": 0.7,
|
488 |
+
"temperature": 0.95,
|
489 |
+
}
|
490 |
+
|
491 |
+
def split_by_len(texts: List[str], split_token: int = 384) -> List[str]:
|
492 |
+
"""
|
493 |
+
Split the knowledge base docs into chunks by length.
|
494 |
+
|
495 |
+
Args:
|
496 |
+
texts (List[str]): Knowledge Base Texts.
|
497 |
+
split_token (int, optional): The max length supported by ernie-text-embedding. Default to 384.
|
498 |
+
|
499 |
+
Returns:
|
500 |
+
List[str]: Doc Chunks.
|
501 |
+
"""
|
502 |
+
chunk = []
|
503 |
+
for text in texts:
|
504 |
+
idx = 0
|
505 |
+
while idx + split_token < len(text):
|
506 |
+
temp_text = text[idx : idx + split_token]
|
507 |
+
next_idx = temp_text.rfind("。") + 1
|
508 |
+
if next_idx != 0: # If this slice doesn't have a period, add the whole sentence.
|
509 |
+
chunk.append(temp_text[:next_idx])
|
510 |
+
idx = idx + next_idx
|
511 |
+
else:
|
512 |
+
chunk.append(temp_text)
|
513 |
+
idx = idx + split_token
|
514 |
+
|
515 |
+
chunk.append(text[idx:])
|
516 |
+
return chunk
|
517 |
+
|
518 |
+
def _get_embedding_doc(word: List[str]) -> List[float]:
|
519 |
+
"""
|
520 |
+
Get the embedding of a list of words.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
word (List[str]): Words to get embedding.
|
524 |
+
|
525 |
+
Returns:
|
526 |
+
List[float]: Embedding List of the words.
|
527 |
+
"""
|
528 |
+
if (_CONFIG["AK"] == "" or _CONFIG["SK"] == "") and _CONFIG["access_token"] == "":
|
529 |
+
raise gr.Error("需要填写正确的AK/SK或access token,不能为空")
|
530 |
+
|
531 |
+
embedding: List[float]
|
532 |
+
if len(word) <= 16:
|
533 |
+
resp = eb.Embedding.create(model="ernie-text-embedding", input=word)
|
534 |
+
assert not isinstance(resp, Iterator)
|
535 |
+
embedding = resp.get_result()
|
536 |
+
else:
|
537 |
+
size = len(word)
|
538 |
+
embedding = []
|
539 |
+
for i in tqdm(range(math.ceil(size / 16))):
|
540 |
+
temp_result = eb.Embedding.create(
|
541 |
+
model="ernie-text-embedding", input=word[i * 16 : (i + 1) * 16]
|
542 |
+
)
|
543 |
+
assert not isinstance(temp_result, Iterator)
|
544 |
+
embedding.extend(temp_result.get_result())
|
545 |
+
time.sleep(1)
|
546 |
+
return embedding
|
547 |
+
|
548 |
+
def l2_normalization(embedding: np.ndarray) -> np.ndarray:
|
549 |
+
"Vector Normalization by l2 norm"
|
550 |
+
if embedding.ndim == 1:
|
551 |
+
return embedding / np.linalg.norm(embedding).reshape(-1, 1)
|
552 |
+
else:
|
553 |
+
return embedding / np.linalg.norm(embedding, axis=1).reshape(-1, 1)
|
554 |
+
|
555 |
+
def find_related_doc(
|
556 |
+
query: str, origin_chunk: List[str], index_ip: faiss.swigfaiss.IndexFlatIP, top_k: int = 5
|
557 |
+
) -> tuple[str, List[int]]:
|
558 |
+
"""
|
559 |
+
Fin top_k similar documents.
|
560 |
+
|
561 |
+
Args:
|
562 |
+
query (str): user query.
|
563 |
+
origin_chunk (List[str]): Knowledge Base Doc.
|
564 |
+
index_ip (faiss.swigfaiss.IndexFlatIP): Vector DB index。
|
565 |
+
top_k (int, optional): Return top_k most similar documents. Default to 5.
|
566 |
+
|
567 |
+
Returns:
|
568 |
+
str, List[int]: The most similar documents and their index.
|
569 |
+
"""
|
570 |
+
|
571 |
+
D, Idx = index_ip.search(np.array(_get_embedding_doc([query])), top_k)
|
572 |
+
top_k_similar = Idx.tolist()[0]
|
573 |
+
|
574 |
+
res = ""
|
575 |
+
ref_lis = []
|
576 |
+
for i in range(top_k):
|
577 |
+
res += f"[参考文章{i+1}]:{origin_chunk[top_k_similar[i]]}" + "\n\n"
|
578 |
+
ref_lis.append(origin_chunk[top_k_similar[i]])
|
579 |
+
return res, ref_lis
|
580 |
+
|
581 |
+
def process_uploaded_file(files: List[str], *args: object) -> str:
|
582 |
+
"""
|
583 |
+
Args:
|
584 |
+
files: Files path
|
585 |
+
_CONFIG: Config
|
586 |
+
"""
|
587 |
+
_update_config(*args)
|
588 |
+
|
589 |
+
content = []
|
590 |
+
for file in files:
|
591 |
+
with open(file, "r") as f:
|
592 |
+
content.append(f.read())
|
593 |
+
|
594 |
+
doc_chunk = split_by_len(content)
|
595 |
+
|
596 |
+
doc_embedding = _get_embedding_doc(doc_chunk)
|
597 |
+
assert len(doc_embedding) == len(doc_chunk), "shape mismatch"
|
598 |
+
doc_embedding_arr = l2_normalization(np.array(doc_embedding))
|
599 |
+
|
600 |
+
index_ip = faiss.IndexFlatIP(doc_embedding_arr.shape[1])
|
601 |
+
index_ip.add(doc_embedding_arr)
|
602 |
+
|
603 |
+
temp_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data")
|
604 |
+
if not os.path.exists(temp_path):
|
605 |
+
os.makedirs(temp_path)
|
606 |
+
|
607 |
+
faiss.write_index(index_ip, os.path.join(temp_path, "knowledge_embedding.index"))
|
608 |
+
with open(os.path.join(temp_path, "knowledge.txt"), "w") as f:
|
609 |
+
for chunk in doc_chunk:
|
610 |
+
f.write(repr(chunk) + "\n")
|
611 |
+
|
612 |
+
return "已完成向量知识库搭建"
|
613 |
+
|
614 |
+
def get_ans(query: str, *args: object) -> tuple[str, str]:
|
615 |
+
_update_config(*args)
|
616 |
+
|
617 |
+
if (_CONFIG["AK"] == "" or _CONFIG["SK"] == "") and _CONFIG["access_token"] == "":
|
618 |
+
raise gr.Error("需要填写正确的AK/SK或access token,不能为空")
|
619 |
+
temp_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data")
|
620 |
+
doc_chunk = []
|
621 |
+
with open(os.path.join(temp_path, "knowledge.txt"), "r") as f:
|
622 |
+
for line in f:
|
623 |
+
doc_chunk.append(eval(line))
|
624 |
+
index_ip = faiss.read_index(os.path.join(temp_path, "knowledge_embedding.index"))
|
625 |
+
related_doc, references = find_related_doc(query, doc_chunk, index_ip)
|
626 |
+
|
627 |
+
refs = []
|
628 |
+
for i in range(len(references)):
|
629 |
+
temp_dict = {
|
630 |
+
"title": f"Reference{i+1}",
|
631 |
+
"text": references[i],
|
632 |
+
}
|
633 |
+
refs.append(temp_dict)
|
634 |
+
|
635 |
+
resp = eb.ChatCompletion.create(
|
636 |
+
model=_CONFIG["ernie_model"],
|
637 |
+
messages=[{"role": "user", "content": PROMPT_TEMPLATE.format(DOCS=related_doc, QUERY=query)}],
|
638 |
+
top_p=_CONFIG["top_p"],
|
639 |
+
temperature=_CONFIG["temperature"],
|
640 |
+
)
|
641 |
+
assert not isinstance(resp, Iterator)
|
642 |
+
answer = resp.get_result()
|
643 |
+
|
644 |
+
return answer, "<h3>References (Click to Expand)</h3>" + "\n".join(
|
645 |
+
[REF_HTML.format(**item, index=idx + 1) for idx, item in enumerate(refs)]
|
646 |
+
)
|
647 |
+
|
648 |
+
def _update_config(*args: object):
|
649 |
+
eb.api_type = args[1]
|
650 |
+
eb.access_token = args[2]
|
651 |
+
eb.AK = args[3]
|
652 |
+
eb.SK = args[4]
|
653 |
+
|
654 |
+
_CONFIG.update(
|
655 |
+
{
|
656 |
+
"ernie_model": args[0],
|
657 |
+
"api_type": args[1],
|
658 |
+
"access_token": args[2],
|
659 |
+
"AK": args[3],
|
660 |
+
"SK": args[4],
|
661 |
+
"top_p": args[5],
|
662 |
+
"temperature": args[6],
|
663 |
+
}
|
664 |
+
)
|
665 |
+
# print(_CONFIG)
|
666 |
+
|
667 |
+
with gr.Tab("知识库问答(Retrieval Augmented QA)"):
|
668 |
+
# gr.Markdown("# 文心大模型RAG问答DEMO")
|
669 |
+
with gr.Tabs():
|
670 |
+
with gr.TabItem("设置栏"):
|
671 |
+
with gr.Row():
|
672 |
+
with gr.Column():
|
673 |
+
file_upload = gr.Files(file_types=["txt"], label="目前仅支持txt格式文件")
|
674 |
+
chat_box = gr.Textbox(show_label=False)
|
675 |
+
with gr.Column():
|
676 |
+
ernie_model = gr.Dropdown(
|
677 |
+
label="Model",
|
678 |
+
info="模型类型",
|
679 |
+
value="ernie-bot-4",
|
680 |
+
choices=["ernie-bot-4", "ernie-bot-turbo", "ernie-bot"],
|
681 |
+
)
|
682 |
+
api_type = gr.Dropdown(
|
683 |
+
label="API Type",
|
684 |
+
info="提供���话能力的后端平台",
|
685 |
+
value="aistudio",
|
686 |
+
choices=["aistudio", "qianfan"],
|
687 |
+
)
|
688 |
+
access_token = gr.Textbox(
|
689 |
+
label="Access Token",
|
690 |
+
info="用于访问后端平台的access token,如果选择aistudio,则需设置此参数",
|
691 |
+
type="password",
|
692 |
+
)
|
693 |
+
access_key = gr.Textbox(
|
694 |
+
label="AK", info="用于访问千帆平台的AK,如果选择qianfan,则需设置此参数", type="password"
|
695 |
+
)
|
696 |
+
secret_key = gr.Textbox(
|
697 |
+
label="SK", info="用于访问千帆平台的SK,如果选择qianfan,则需设置此参数", type="password"
|
698 |
+
)
|
699 |
+
top_p = gr.Slider(
|
700 |
+
label="Top-p",
|
701 |
+
info="控制采样范围,该参数越小生成结果越稳定",
|
702 |
+
value=0.7,
|
703 |
+
step=0.05,
|
704 |
+
minimum=0,
|
705 |
+
maximum=1,
|
706 |
+
)
|
707 |
+
temperature = gr.Slider(
|
708 |
+
label="temperature",
|
709 |
+
info="控制采样随机性,该参数越小生成结果越稳定",
|
710 |
+
value=0.95,
|
711 |
+
step=0.05,
|
712 |
+
maximum=1,
|
713 |
+
minimum=0,
|
714 |
+
)
|
715 |
+
|
716 |
+
with gr.TabItem("问答栏"):
|
717 |
+
with gr.Row():
|
718 |
+
query_box = gr.Textbox(show_label=False, placeholder="Enter question and press ENTER")
|
719 |
+
|
720 |
+
answer_box = gr.Textbox(show_label=False, value="", lines=5)
|
721 |
+
ref_boxes = gr.HTML(label="References")
|
722 |
+
|
723 |
+
query_box.submit(
|
724 |
+
get_ans,
|
725 |
+
[query_box, ernie_model, api_type, access_token, access_key, secret_key, top_p, temperature],
|
726 |
+
[answer_box, ref_boxes],
|
727 |
+
)
|
728 |
+
file_upload.upload(
|
729 |
+
process_uploaded_file,
|
730 |
+
[file_upload, ernie_model, api_type, access_token, access_key, secret_key, top_p, temperature],
|
731 |
+
chat_box,
|
732 |
+
)
|
733 |
+
|
734 |
+
|
735 |
+
if __name__ == "__main__":
|
736 |
+
args = parse_setup_args()
|
737 |
+
create_ui_and_launch(args)
|