markpeace commited on
Commit
257931c
1 Parent(s): 9d18d30

reintegrated training

Browse files
Files changed (4) hide show
  1. agent/__init__.py +0 -0
  2. app.py +7 -1
  3. faq_train.py +0 -20
  4. train/faq.py +22 -0
agent/__init__.py DELETED
File without changes
app.py CHANGED
@@ -9,4 +9,10 @@ load_dotenv()
9
  @app.route("/", methods=['GET','POST'])
10
  def index():
11
  from agent._create import agent_executor
12
- return agent_executor();
 
 
 
 
 
 
 
9
  @app.route("/", methods=['GET','POST'])
10
  def index():
11
  from agent._create import agent_executor
12
+ return agent_executor();
13
+
14
+
15
+ @app.route("/train/faq", methods=['GET','POST'])
16
+ def train_faq():
17
+ from train.faq import train
18
+ return train();
faq_train.py DELETED
@@ -1,20 +0,0 @@
1
- from langchain_community.document_loaders.csv_loader import CSVLoader
2
- from langchain.text_splitter import CharacterTextSplitter
3
- from langchain_openai import OpenAIEmbeddings
4
- from langchain_community.vectorstores.faiss import FAISS
5
- from dotenv import load_dotenv
6
- from langchain.document_loaders import WebBaseLoader
7
-
8
- load_dotenv();
9
-
10
- documents = WebBaseLoader("https://rise.mmu.ac.uk/what-is-rise/").load()
11
-
12
- # Split document in chunks
13
- text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
14
- docs = text_splitter.split_documents(documents=documents)
15
-
16
- embeddings = OpenAIEmbeddings()
17
- # Create vectors
18
- vectorstore = FAISS.from_documents(docs, embeddings)
19
- # Persist the vectors locally on disk
20
- vectorstore.save_local("_rise_faq_db");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
train/faq.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ def train():
3
+ from langchain_community.document_loaders.csv_loader import CSVLoader
4
+ from langchain.text_splitter import CharacterTextSplitter
5
+ from langchain_openai import OpenAIEmbeddings
6
+ from langchain_community.vectorstores.faiss import FAISS
7
+ from dotenv import load_dotenv
8
+ from langchain.document_loaders import WebBaseLoader
9
+
10
+ documents = WebBaseLoader("https://rise.mmu.ac.uk/what-is-rise/").load()
11
+
12
+ # Split document in chunks
13
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
14
+ docs = text_splitter.split_documents(documents=documents)
15
+
16
+ embeddings = OpenAIEmbeddings()
17
+ # Create vectors
18
+ vectorstore = FAISS.from_documents(docs, embeddings)
19
+ # Persist the vectors locally on disk
20
+ vectorstore.save_local("_rise_faq_db");
21
+
22
+ return {"trained":"success"}