Spaces:
Runtime error
Runtime error
adding app file
Browse files
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from PIL import Image
|
5 |
+
import uform
|
6 |
+
|
7 |
+
model = uform.get_model('unum-cloud/uform-vl-english')
|
8 |
+
|
9 |
+
def find_score(img, txt, if_fine_grained):
|
10 |
+
txt = model.preprocess_text(txt)
|
11 |
+
img = model.preprocess_image(img)
|
12 |
+
txt_features, txt_emb = model.encode_text(txt, return_features = True)
|
13 |
+
img_features, img_emb = model.encode_image(img, return_features = True)
|
14 |
+
if if_fine_grained:
|
15 |
+
joint_embedding = model.encode_multimodal(
|
16 |
+
image_features=img_features,
|
17 |
+
text_features=txt_features,
|
18 |
+
attention_mask=txt['attention_mask'])
|
19 |
+
score = model.get_matching_scores(joint_embedding)
|
20 |
+
else:
|
21 |
+
score = F.cosine_similarity(txt_emb, img_emb)
|
22 |
+
return score
|
23 |
+
|
24 |
+
def find_score_img(img1, img2, if_fine_grained):
|
25 |
+
img1 = model.preprocess_image(img1)
|
26 |
+
img2 = model.preprocess_image(img2)
|
27 |
+
img_features1, img_emb1 = model.encode_image(img1, return_features = True)
|
28 |
+
img_features2, img_emb2 = model.encode_image(img2, return_features = True)
|
29 |
+
if if_fine_grained:
|
30 |
+
joint_embedding = model.encode_multimodal(
|
31 |
+
image_features=img_features1,
|
32 |
+
text_features=img_features2,
|
33 |
+
attention_mask=img1['attention_mask'])
|
34 |
+
score = model.get_matching_scores(joint_embedding)
|
35 |
+
else:
|
36 |
+
score = F.cosine_similarity(img_emb1, img_emb2)
|
37 |
+
return score
|
38 |
+
|
39 |
+
def find_score_txt(txt1, txt2, if_fine_grained):
|
40 |
+
txt1 = model.preprocess_text(txt1)
|
41 |
+
txt2 = model.preprocess_text(txt2)
|
42 |
+
txt_features1, txt_emb1 = model.encode_text(txt1, return_features = True)
|
43 |
+
txt_features2, txt_emb2 = model.encode_text(txt2, return_features = True)
|
44 |
+
if if_fine_grained:
|
45 |
+
joint_embedding = model.encode_multimodal(
|
46 |
+
image_features=txt_features1,
|
47 |
+
text_features=txt_features2,
|
48 |
+
attention_mask=txt1['attention_mask'])
|
49 |
+
score = model.get_matching_scores(joint_embedding)
|
50 |
+
else:
|
51 |
+
score = F.cosine_similarity(txt_emb1, txt_emb2)
|
52 |
+
return score
|
53 |
+
|
54 |
+
with gr.Blocks(theme = gr.themes.Glass()) as demo_mix:
|
55 |
+
gr.Markdown('# Find similarity between images and text.')
|
56 |
+
with gr.Row():
|
57 |
+
with gr.Column():
|
58 |
+
img_input = gr.Image(source = 'upload', type = 'pil', label = "Drop your image here", shape = [256, 256])
|
59 |
+
with gr.Column():
|
60 |
+
txt_input = gr.Textbox(label = 'Enter your text here:' , lines = 1,)
|
61 |
+
if_fine_grained = gr.Checkbox(label = "Check for a more fine-grained comparison")
|
62 |
+
btn = gr.Button("Find similarity")
|
63 |
+
score = gr.Number(label='Similarity score')
|
64 |
+
btn.click(find_score, inputs=[img_input, txt_input, if_fine_grained], outputs=[score])
|
65 |
+
gr.Markdown('If the box for a more fine-grained comparison is checked, the similarity score will be in (0,1), otherwise, it will be in (-1,1)')
|
66 |
+
gr.Markdown('### Image examples')
|
67 |
+
gr.Examples(['imgs/red_panda.jpg', 'imgs/trash_raccoon.jpg', 'imgs/baby_panda.jpg', 'imgs/rocket.jpg'], inputs=[img_input])
|
68 |
+
gr.Markdown('### Text examples')
|
69 |
+
gr.Examples(['baby red panda staring into the camera', \
|
70 |
+
'trash raccoon peeking from a trash bin',
|
71 |
+
'a cartoonish raccoon wearing a blue and red suit',
|
72 |
+
"a person holding a baby panda"], inputs=[txt_input])
|
73 |
+
|
74 |
+
|
75 |
+
with gr.Blocks() as demo_img:
|
76 |
+
gr.Markdown('# Find similarity between images.')
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column():
|
79 |
+
img_input1 = gr.Image(source = 'upload', type = 'pil', label = "Drop your image here", shape = [256, 256])
|
80 |
+
if_fine_grained = gr.Checkbox(label = "Check for a more fine-grained comparison")
|
81 |
+
with gr.Column():
|
82 |
+
img_input2 = gr.Image(source = 'upload', type = 'pil', label = "Drop your image here", shape = [256, 256])
|
83 |
+
btn = gr.Button("Find similarity")
|
84 |
+
score = gr.Number(label='Similarity score')
|
85 |
+
btn.click(find_score_img, inputs=[img_input1, img_input2, if_fine_grained], outputs=[score])
|
86 |
+
gr.Markdown('If the box for a more fine-grained comparison is checked, the similarity score will be in (0,1), otherwise, it will be in (-1,1)')
|
87 |
+
gr.Markdown('### Image examples')
|
88 |
+
gr.Examples(['imgs/red_panda.jpg', 'imgs/trash_raccoon.jpg', 'imgs/baby_panda.jpg', 'imgs/rocket.jpg'], inputs=[img_input1])
|
89 |
+
|
90 |
+
|
91 |
+
with gr.Blocks() as demo_txt:
|
92 |
+
gr.Markdown('# Find similarity between short descriptions.')
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column():
|
95 |
+
txt_input1 = gr.Textbox(label = 'Enter your text here:' , lines = 1)
|
96 |
+
txt_input2 = gr.Textbox(label = 'Enter your text here:' , lines = 1)
|
97 |
+
with gr.Column():
|
98 |
+
if_fine_grained = gr.Checkbox(label = "Check for a more fine-grained comparison")
|
99 |
+
btn = gr.Button("Find similarity")
|
100 |
+
score = gr.Number(label='Similarity score')
|
101 |
+
btn.click(find_score_txt, inputs=[img_input, txt_input, if_fine_grained], outputs=[score])
|
102 |
+
gr.Markdown('If the box for a more fine-grained comparison is checked, the similarity score will be in (0,1), otherwise, it will be in (-1,1)')
|
103 |
+
gr.Markdown('### Text examples')
|
104 |
+
gr.Examples(['baby red panda staring into the camera', \
|
105 |
+
'trash raccoon peeking from a trash bin',
|
106 |
+
'a cartoonish raccoon wearing a blue and red suit',
|
107 |
+
"a person holding a baby panda"], inputs=[txt_input1])
|
108 |
+
|
109 |
+
demo = gr.TabbedInterface([demo_mix, demo_img, demo_txt], ["img2txt", "img2img", "txt2txt"])
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
demo.launch(share=True)
|