Spaces:
Running
Enhance and redesign DuckDB introductory notebook
Browse filesThis commit addresses and resolves the suggestions provided in the review, including:
- Ensuring the notebook follows the best practices outlined in the contribution guidelines.
- Removing irrelevant markdown blocks and using marimo features.
Additionally, the notebook has been completely redesigned with:
- Improved structure and flow for better readability and learning experience.
- Enhanced examples and interactive content for database connections, table creation, and data manipulation.
- Better integration of visuals using Plotly and Marimo for basic interactive analysis.
- Updated dependency management using for reproducibility.
The notebook now provides a polished and user-friendly guide to DuckDB, ensuring a high-quality learning experience for users.
- duckdb/01_getting_started.py +1531 -121
|
@@ -1,232 +1,1638 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import marimo
|
| 2 |
|
| 3 |
-
__generated_with = "0.
|
| 4 |
-
app = marimo.App(width="medium")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
@app.cell(hide_code=True)
|
| 8 |
-
def
|
| 9 |
mo.md(
|
| 10 |
-
"""
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
[DuckDB](https://duckdb.org/) is a high-performance, in-process analytical database management system (DBMS) designed for speed and simplicity. It's particularly well-suited for analytical query workloads, offering a robust SQL interface and efficient data processing capabilities. This document highlights key features and aspects of DuckDB relevant for a course on database systems or data analysis.
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
- In-Process: Easy integration, zero external dependencies.
|
| 20 |
-
- Portable: Works on various OS and architectures.
|
| 21 |
-
- Columnar Storage: Efficient for analytical queries.
|
| 22 |
-
- Vectorized Execution: Speeds up data processing.
|
| 23 |
-
- ACID Transactions: Ensures data integrity.
|
| 24 |
-
- Multi-Language APIs: Python, R, Java, etc.
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
- Data analysis and exploration
|
| 29 |
-
- Embedded analytics in applications
|
| 30 |
-
- ETL (Extract, Transform, Load) processes
|
| 31 |
-
- Data science and machine learning workflows
|
| 32 |
-
- Rapid prototyping of data analysis pipelines.
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
- The DuckDB Python API can be installed using pip:
|
| 37 |
-
```
|
| 38 |
-
pip install duckdb
|
| 39 |
-
```
|
| 40 |
-
- It is also possible to install DuckDB using conda:
|
| 41 |
-
```
|
| 42 |
-
conda install python-duckdb -c conda-forge.
|
| 43 |
-
```
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
return
|
| 49 |
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
@app.cell(hide_code=True)
|
| 52 |
def _(mo):
|
| 53 |
mo.md(
|
| 54 |
r"""
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
"""
|
| 59 |
)
|
| 60 |
return
|
| 61 |
|
| 62 |
|
| 63 |
@app.cell
|
| 64 |
-
def
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
@app.cell(hide_code=True)
|
| 74 |
def _(mo):
|
| 75 |
-
mo.md(
|
| 76 |
-
r"""# [2. Creating Tables](https://duckdb.org/docs/stable/sql/statements/create_table.html)"""
|
| 77 |
-
)
|
| 78 |
return
|
| 79 |
|
| 80 |
|
| 81 |
@app.cell
|
| 82 |
-
def
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
CREATE TABLE
|
| 86 |
id INTEGER,
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
registration_date DATE
|
| 90 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
"""
|
| 92 |
)
|
| 93 |
return
|
| 94 |
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
@app.cell(hide_code=True)
|
| 97 |
def _(mo):
|
| 98 |
mo.md(
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
| 101 |
return
|
| 102 |
|
| 103 |
|
| 104 |
@app.cell
|
| 105 |
-
def
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
(
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
return
|
| 115 |
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
@app.cell(hide_code=True)
|
| 118 |
def _(mo):
|
| 119 |
mo.md(
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
| 121 |
)
|
| 122 |
return
|
| 123 |
|
| 124 |
|
| 125 |
@app.cell
|
| 126 |
-
def
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
for user_row in user_results:
|
| 130 |
-
print(user_row)
|
| 131 |
-
return user_results, user_row
|
| 132 |
|
| 133 |
|
| 134 |
@app.cell(hide_code=True)
|
| 135 |
def _(mo):
|
| 136 |
mo.md(
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
| 138 |
)
|
| 139 |
return
|
| 140 |
|
| 141 |
|
| 142 |
@app.cell
|
| 143 |
-
def
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
)
|
|
|
|
|
|
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
return polars_dataframe, polars_results, polars_row
|
| 165 |
|
| 166 |
|
| 167 |
@app.cell(hide_code=True)
|
| 168 |
def _(mo):
|
| 169 |
mo.md(
|
| 170 |
-
r"""
|
|
|
|
|
|
|
|
|
|
| 171 |
)
|
| 172 |
return
|
| 173 |
|
| 174 |
|
| 175 |
@app.cell
|
| 176 |
-
def
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
"""
|
| 183 |
)
|
| 184 |
-
|
| 185 |
-
for join_row in join_results.fetchall():
|
| 186 |
-
print(join_row)
|
| 187 |
-
return join_results, join_row
|
| 188 |
|
| 189 |
|
| 190 |
@app.cell(hide_code=True)
|
| 191 |
def _(mo):
|
| 192 |
mo.md(
|
| 193 |
-
r"""
|
|
|
|
|
|
|
|
|
|
| 194 |
)
|
| 195 |
return
|
| 196 |
|
| 197 |
|
| 198 |
@app.cell
|
| 199 |
-
def
|
| 200 |
-
|
| 201 |
-
""
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
"""
|
| 205 |
-
).fetchall()
|
| 206 |
-
print(
|
| 207 |
-
f"Average Age: {aggregate_results[0][0]:.1f}, "
|
| 208 |
-
f"Max Age: {aggregate_results[0][1]}, "
|
| 209 |
-
f"Min Age: {aggregate_results[0][2]}"
|
| 210 |
)
|
| 211 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
|
| 214 |
@app.cell(hide_code=True)
|
| 215 |
def _(mo):
|
| 216 |
mo.md(
|
| 217 |
-
r"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
)
|
| 219 |
return
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
@app.cell
|
| 223 |
-
def
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
|
| 232 |
@app.cell(hide_code=True)
|
|
@@ -234,8 +1640,12 @@ def _():
|
|
| 234 |
import marimo as mo
|
| 235 |
import duckdb
|
| 236 |
import polars as pl
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
|
| 241 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.11"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "marimo",
|
| 5 |
+
# "duckdb==1.2.2",
|
| 6 |
+
# "polars==1.27.0",
|
| 7 |
+
# "numpy==2.2.4",
|
| 8 |
+
# "pyarrow==19.0.1",
|
| 9 |
+
# "pandas==2.2.3",
|
| 10 |
+
# "sqlglot==26.12.1",
|
| 11 |
+
# "plotly==5.23.1",
|
| 12 |
+
# ]
|
| 13 |
+
# ///
|
| 14 |
+
|
| 15 |
import marimo
|
| 16 |
|
| 17 |
+
__generated_with = "0.13.4"
|
| 18 |
+
app = marimo.App(width="medium")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@app.cell(hide_code=True)
|
| 22 |
+
def _(mo):
|
| 23 |
+
mo.md(
|
| 24 |
+
rf"""
|
| 25 |
+
<p align="center">
|
| 26 |
+
<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSxHAqB0W_61zuIGVMiU6sEeQyTaw-9xwiprw&s" alt="DuckDB Image"/>
|
| 27 |
+
</p>
|
| 28 |
+
"""
|
| 29 |
+
)
|
| 30 |
+
return
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@app.cell(hide_code=True)
|
| 34 |
+
def _(mo):
|
| 35 |
+
mo.md(
|
| 36 |
+
rf"""
|
| 37 |
+
# 🦆 **DuckDB**: An Embeddable Analytical Database System
|
| 38 |
+
|
| 39 |
+
## What is DuckDB?
|
| 40 |
+
|
| 41 |
+
[DuckDB](https://duckdb.org/) is a _high-performance_, in-process, embeddable SQL OLAP (Online Analytical Processing) Database Management System (DBMS) designed for simplicity and speed. It's essentially a fully-featured database that runs directly within your application's process, without needing a separate server. This makes it excellent for complex analytical workloads, offering a robust SQL interface and efficient processing – perfect for learning about databases and data analysis concepts. It's a great alternative to heavier database systems like PostgreSQL or MySQL when you don't need a full-blown server.
|
| 42 |
+
|
| 43 |
+
---
|
| 44 |
+
|
| 45 |
+
## ⚡ Key Features
|
| 46 |
+
|
| 47 |
+
| Feature | Description |
|
| 48 |
+
|:---------|:-------------|
|
| 49 |
+
| **In-Process Architecture** | Runs directly within your application's memory space - no separate server needed, simplifying deployment |
|
| 50 |
+
| **Columnar Storage** | Data stored in columns instead of rows, dramatically improving performance for analytical queries |
|
| 51 |
+
| **Vectorized Execution** | Performs operations on entire columns at once, significantly speeding up data processing |
|
| 52 |
+
| **ACID Transactions** | Ensures data integrity and reliability across operations |
|
| 53 |
+
| **Multi-Language Support** | Provides APIs for `Python`, `R`, `Java`, `C++`, and more |
|
| 54 |
+
| **Zero External Dependencies** | Minimal dependencies, making setup and deployment straightforward |
|
| 55 |
+
| **High Portability** | Works across various operating systems (Windows, macOS, Linux) and hardware architectures |
|
| 56 |
+
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
## [Use Cases](https://github.com/davidgasquez/awesome-duckdb?tab=readme-ov-file):
|
| 60 |
+
|
| 61 |
+
- **Data Analysis and Exploration:** DuckDB is ideal for quickly querying and analyzing datasets, especially for initial exploratory analysis.
|
| 62 |
+
- **Embedded Analytics in Applications:** You can integrate DuckDB directly into your applications to provide analytical capabilities without the need for a separate database server.
|
| 63 |
+
- **ETL (Extract, Transform, Load) Processes:** DuckDB can be used to perform initial data transformation and cleaning steps as part of an ETL pipeline.
|
| 64 |
+
- **Data Science and Machine Learning Workflows:** It's a lightweight alternative to larger databases for prototyping data analysis and machine learning models.
|
| 65 |
+
- **Rapid Prototyping of Data Analysis Pipelines:** Quickly test and iterate on data analysis ideas without the complexity of setting up a full-blown database environment.
|
| 66 |
+
- **Small to Medium Datasets:** DuckDB shines when working with datasets that don't require the massive scalability of a traditional database server.
|
| 67 |
+
|
| 68 |
+
---
|
| 69 |
+
|
| 70 |
+
### [Installation](https://duckdb.org/docs/installation/?version=stable&environment=python):
|
| 71 |
+
|
| 72 |
+
- Python installation:
|
| 73 |
+
```
|
| 74 |
+
pip install duckdb
|
| 75 |
+
```
|
| 76 |
+
```
|
| 77 |
+
conda install python-duckdb -c conda-forge.
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
<!-- >**_Note_:** DuckDB requires Python 3.7 or newer. You also need to have Python and `pip` or `conda` installed on your system. -->
|
| 81 |
+
|
| 82 |
+
/// attention | Note
|
| 83 |
+
DuckDB requires Python 3.7 or newer. You also need to have Python and `pip` or `conda` installed on your system.
|
| 84 |
+
///
|
| 85 |
+
"""
|
| 86 |
+
)
|
| 87 |
+
return
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
@app.cell(hide_code=True)
|
| 91 |
+
def _(mo):
|
| 92 |
+
mo.md(
|
| 93 |
+
r"""
|
| 94 |
+
# [1. DuckDB Connections: In-Memory vs. File-based](https://duckdb.org/docs/stable/connect/overview.html)
|
| 95 |
+
|
| 96 |
+
DuckDB is a lightweight, _relational database management system (RDBMS)_ designed for analytical workloads. Unlike traditional client-server databases, it operates _in-process_ (embedded within your application) and supports both _in-memory_ (temporary) and _file-based_ (persistent) storage.
|
| 97 |
+
|
| 98 |
+
---
|
| 99 |
+
|
| 100 |
+
| Feature | In-Memory Connection | File-Based Connection |
|
| 101 |
+
|:---------|:---------------------|:----------------------|
|
| 102 |
+
| Persistence | Temporary (lost when session ends) | Stored on disk (persists between sessions) |
|
| 103 |
+
| Use Cases | Quick analysis, ephemeral data, testing | Long-term storage, data that needs to be accessed later |
|
| 104 |
+
| Performance | Faster for most operations | Slightly slower but provides persistence |
|
| 105 |
+
| Creation | duckdb.connect(':memory:') | duckdb.connect('filename.db') |
|
| 106 |
+
| Multiple Connection Access | Limited to single connection | Multiple connections can access the same database |
|
| 107 |
+
|
| 108 |
+
"""
|
| 109 |
+
)
|
| 110 |
+
return
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
@app.cell
|
| 114 |
+
def _(os):
|
| 115 |
+
# Remove previous database if it exists
|
| 116 |
+
if os.path.exists("example.db"):
|
| 117 |
+
os.remove("example.db")
|
| 118 |
+
|
| 119 |
+
if not os.path.exists("data"):
|
| 120 |
+
os.makedirs("data")
|
| 121 |
+
return
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
@app.cell
|
| 125 |
+
def _(mo):
|
| 126 |
+
_df = mo.sql(
|
| 127 |
+
f"""
|
| 128 |
+
-- Print the DuckDB version
|
| 129 |
+
SELECT version() AS version_info
|
| 130 |
+
"""
|
| 131 |
+
)
|
| 132 |
+
return
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
@app.cell(hide_code=True)
|
| 136 |
+
def _(mo):
|
| 137 |
+
mo.md(
|
| 138 |
+
"""
|
| 139 |
+
## Creating DuckDB Connections
|
| 140 |
+
|
| 141 |
+
Let's create both types of DuckDB connections and explore their characteristics.
|
| 142 |
+
|
| 143 |
+
1. **In-memory connection**: Data exists only during the current session
|
| 144 |
+
2. **File-based connection**: Data persists between sessions
|
| 145 |
+
|
| 146 |
+
We'll then demonstrate the key differences between these connection types.
|
| 147 |
+
"""
|
| 148 |
+
)
|
| 149 |
+
return
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
@app.cell
|
| 153 |
+
def _(duckdb):
|
| 154 |
+
# Create an in-memory DuckDB connection
|
| 155 |
+
memory_db = duckdb.connect(":memory:")
|
| 156 |
+
|
| 157 |
+
# Create a file-based DuckDB connection
|
| 158 |
+
file_db = duckdb.connect("example.db")
|
| 159 |
+
return file_db, memory_db
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
@app.cell
|
| 163 |
+
def _(file_db, memory_db):
|
| 164 |
+
# Test both connections
|
| 165 |
+
memory_db.execute(
|
| 166 |
+
"CREATE TABLE IF NOT EXISTS mem_test (id INTEGER, name VARCHAR)"
|
| 167 |
+
)
|
| 168 |
+
memory_db.execute("INSERT INTO mem_test VALUES (1, 'Memory Test')")
|
| 169 |
+
|
| 170 |
+
file_db.execute(
|
| 171 |
+
"CREATE TABLE IF NOT EXISTS file_test (id INTEGER, name VARCHAR)"
|
| 172 |
+
)
|
| 173 |
+
file_db.execute("INSERT INTO file_test VALUES (1, 'File Test')")
|
| 174 |
+
return
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
@app.cell(hide_code=True)
|
| 178 |
+
def _(mo):
|
| 179 |
+
mo.md(
|
| 180 |
+
r"""
|
| 181 |
+
## Testing Connection Persistence
|
| 182 |
+
|
| 183 |
+
Let's demonstrate how in-memory databases are ephemeral, while file-based databases persist.
|
| 184 |
+
|
| 185 |
+
1. First, we'll query our tables to confirm the data was properly inserted
|
| 186 |
+
2. Then, we'll simulate an application restart by creating new connections
|
| 187 |
+
3. Finally, we'll check which data persists after the "restart"
|
| 188 |
+
"""
|
| 189 |
+
)
|
| 190 |
+
return
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
@app.cell(hide_code=True)
|
| 194 |
+
def _(mo):
|
| 195 |
+
mo.md(r"""## Current Database Contents""")
|
| 196 |
+
return
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
@app.cell
|
| 200 |
+
def _(mem_test, memory_db, mo):
|
| 201 |
+
_df = mo.sql(
|
| 202 |
+
f"""
|
| 203 |
+
SELECT * FROM mem_test
|
| 204 |
+
""",
|
| 205 |
+
engine=memory_db
|
| 206 |
+
)
|
| 207 |
+
return
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
@app.cell
|
| 211 |
+
def _(file_db, file_test, mo):
|
| 212 |
+
_df = mo.sql(
|
| 213 |
+
f"""
|
| 214 |
+
SELECT * FROM file_test
|
| 215 |
+
""",
|
| 216 |
+
engine=file_db
|
| 217 |
+
)
|
| 218 |
+
return
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
@app.cell
|
| 222 |
+
def _():
|
| 223 |
+
# We don't actually close the connections here since we need them for later cells
|
| 224 |
+
# Just a placeholder for the concept
|
| 225 |
+
return
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
@app.cell(hide_code=True)
|
| 229 |
+
def _file_query(mo):
|
| 230 |
+
mo.md(rf"""## 🔄 Simulating Application Restart...""")
|
| 231 |
+
return
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
@app.cell
|
| 235 |
+
def _(duckdb):
|
| 236 |
+
# Create new connections (simulating restart)
|
| 237 |
+
new_memory_db = duckdb.connect(":memory:")
|
| 238 |
+
new_file_db = duckdb.connect("example.db")
|
| 239 |
+
return new_file_db, new_memory_db
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
@app.cell
|
| 243 |
+
def _(new_memory_db):
|
| 244 |
+
# Try to query tables in the new memory connection
|
| 245 |
+
try:
|
| 246 |
+
new_memory_db.execute("SELECT * FROM mem_test").df()
|
| 247 |
+
memory_persistence = "✅ Data persisted in memory (unexpected)"
|
| 248 |
+
memory_data_available = True
|
| 249 |
+
except Exception as e:
|
| 250 |
+
memory_persistence = "❌ Data lost from memory (expected behavior)"
|
| 251 |
+
memory_data_available = False
|
| 252 |
+
return memory_data_available, memory_persistence
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
@app.cell
|
| 256 |
+
def _(new_file_db):
|
| 257 |
+
# Try to query tables in the new file connection
|
| 258 |
+
try:
|
| 259 |
+
file_data = new_file_db.execute("SELECT * FROM file_test").df()
|
| 260 |
+
file_persistence = "✅ Data persisted in file (expected behavior)"
|
| 261 |
+
file_data_available = True
|
| 262 |
+
except Exception as e:
|
| 263 |
+
file_persistence = "❌ Data lost from file (unexpected)"
|
| 264 |
+
file_data_available = False
|
| 265 |
+
file_data = None
|
| 266 |
+
return file_data, file_data_available, file_persistence
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
@app.cell
|
| 270 |
+
def _(
|
| 271 |
+
file_data_available,
|
| 272 |
+
file_persistence,
|
| 273 |
+
memory_data_available,
|
| 274 |
+
memory_persistence,
|
| 275 |
+
mo,
|
| 276 |
+
):
|
| 277 |
+
# Create an interactive display to show persistence results
|
| 278 |
+
persistence_results = mo.ui.table(
|
| 279 |
+
{
|
| 280 |
+
"Connection Type": ["In-Memory Database", "File-Based Database"],
|
| 281 |
+
"Persistence Status": [memory_persistence, file_persistence],
|
| 282 |
+
"Data Available After Restart": [
|
| 283 |
+
memory_data_available,
|
| 284 |
+
file_data_available,
|
| 285 |
+
],
|
| 286 |
+
}
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
mo.md("### Persistence Test Results")
|
| 290 |
+
return (persistence_results,)
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
@app.cell
|
| 294 |
+
def _(persistence_results):
|
| 295 |
+
persistence_results
|
| 296 |
+
return
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
@app.cell
|
| 300 |
+
def _(file_data, file_data_available, mo):
|
| 301 |
+
if file_data_available:
|
| 302 |
+
mo.md("### Persisted File-Based Data:")
|
| 303 |
+
mo.ui.table(file_data)
|
| 304 |
+
return
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
@app.cell(hide_code=True)
|
| 308 |
+
def _(mo):
|
| 309 |
+
mo.md(
|
| 310 |
+
r"""
|
| 311 |
+
# [2. Creating Tables in DuckDB](https://duckdb.org/docs/stable/sql/statements/create_table.html)
|
| 312 |
+
|
| 313 |
+
DuckDB supports standard SQL syntax for creating tables. Let's create more complex tables to demonstrate different data types and constraints.
|
| 314 |
+
|
| 315 |
+
## Table Creation Options
|
| 316 |
+
|
| 317 |
+
DuckDB supports various table creation options, including:
|
| 318 |
+
|
| 319 |
+
- **Basic tables** with column definitions
|
| 320 |
+
- **Temporary tables** that exist only during the session
|
| 321 |
+
- **CREATE OR REPLACE** to recreate tables
|
| 322 |
+
- **Primary keys** and other constraints
|
| 323 |
+
- **Various data types** including INTEGER, VARCHAR, TIMESTAMP, DECIMAL, etc.
|
| 324 |
+
"""
|
| 325 |
+
)
|
| 326 |
+
return
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
@app.cell
|
| 330 |
+
def _create_users_tables(file_db, new_memory_db):
|
| 331 |
+
# For the memory database
|
| 332 |
+
try:
|
| 333 |
+
new_memory_db.execute("DROP TABLE IF EXISTS users_memory")
|
| 334 |
+
except:
|
| 335 |
+
pass
|
| 336 |
+
|
| 337 |
+
# For the file database
|
| 338 |
+
try:
|
| 339 |
+
file_db.execute("DROP TABLE IF EXISTS users_file")
|
| 340 |
+
except:
|
| 341 |
+
pass
|
| 342 |
+
return
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
@app.cell
|
| 346 |
+
def _(file_db, new_memory_db):
|
| 347 |
+
# Create advanced users table in memory database with primary key
|
| 348 |
+
new_memory_db.execute("""
|
| 349 |
+
CREATE TABLE users_memory (
|
| 350 |
+
id INTEGER PRIMARY KEY,
|
| 351 |
+
name VARCHAR NOT NULL,
|
| 352 |
+
age INTEGER CHECK (age > 0),
|
| 353 |
+
email VARCHAR UNIQUE,
|
| 354 |
+
registration_date DATE DEFAULT CURRENT_DATE,
|
| 355 |
+
last_login TIMESTAMP,
|
| 356 |
+
account_balance DECIMAL(10,2) DEFAULT 0.00
|
| 357 |
+
)
|
| 358 |
+
""")
|
| 359 |
+
|
| 360 |
+
# Create users table in file database
|
| 361 |
+
file_db.execute("""
|
| 362 |
+
CREATE TABLE users_file (
|
| 363 |
+
id INTEGER PRIMARY KEY,
|
| 364 |
+
name VARCHAR NOT NULL,
|
| 365 |
+
age INTEGER CHECK (age > 0),
|
| 366 |
+
email VARCHAR UNIQUE,
|
| 367 |
+
registration_date DATE DEFAULT CURRENT_DATE,
|
| 368 |
+
last_login TIMESTAMP,
|
| 369 |
+
account_balance DECIMAL(10,2) DEFAULT 0.00
|
| 370 |
+
)
|
| 371 |
+
""")
|
| 372 |
+
return
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
@app.cell
|
| 376 |
+
def _(mo, new_memory_db):
|
| 377 |
+
# Get table schema information using DuckDB's internal system tables
|
| 378 |
+
memory_schema = new_memory_db.execute("""
|
| 379 |
+
SELECT column_name, data_type, is_nullable
|
| 380 |
+
FROM information_schema.columns
|
| 381 |
+
WHERE table_name = 'users_memory'
|
| 382 |
+
ORDER BY ordinal_position
|
| 383 |
+
""").df()
|
| 384 |
+
|
| 385 |
+
# Display the schema using marimo's UI components
|
| 386 |
+
mo.md("### 🔍 Table Schema Information")
|
| 387 |
+
return (memory_schema,)
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
@app.cell(hide_code=True)
|
| 391 |
+
def _(memory_schema, mo):
|
| 392 |
+
mo.ui.table(memory_schema)
|
| 393 |
+
return
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
@app.cell(hide_code=True)
|
| 397 |
+
def _(mo):
|
| 398 |
+
mo.md(
|
| 399 |
+
r"""
|
| 400 |
+
# [3. Inserting Data Into Tables](https://duckdb.org/docs/stable/sql/statements/insert)
|
| 401 |
+
|
| 402 |
+
DuckDB supports multiple ways to insert data:
|
| 403 |
+
|
| 404 |
+
1. **INSERT INTO VALUES**: Insert specific values
|
| 405 |
+
2. **INSERT INTO SELECT**: Insert data from query results
|
| 406 |
+
3. **Parameterized inserts**: Using prepared statements
|
| 407 |
+
4. **Bulk inserts**: For efficient loading of multiple rows
|
| 408 |
+
|
| 409 |
+
Let's demonstrate these different insertion methods:
|
| 410 |
+
"""
|
| 411 |
+
)
|
| 412 |
+
return
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
@app.cell
|
| 416 |
+
def _insert_user_data(date):
|
| 417 |
+
today = date.today()
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
# First check if records already exist to avoid duplicate key errors
|
| 421 |
+
def safe_insert(connection, table_name, data):
|
| 422 |
+
"""
|
| 423 |
+
Safely insert data into a table by checking for existing IDs first
|
| 424 |
+
"""
|
| 425 |
+
# Check which IDs already exist in the table
|
| 426 |
+
existing_ids = (
|
| 427 |
+
connection.execute(f"SELECT id FROM {table_name}")
|
| 428 |
+
.fetchdf()["id"]
|
| 429 |
+
.tolist()
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
# Filter out data with IDs that already exist
|
| 433 |
+
new_data = [record for record in data if record[0] not in existing_ids]
|
| 434 |
+
|
| 435 |
+
if not new_data:
|
| 436 |
+
print(
|
| 437 |
+
f"No new records to insert into {table_name}. All IDs already exist."
|
| 438 |
+
)
|
| 439 |
+
return 0
|
| 440 |
+
|
| 441 |
+
# Prepare the placeholders for the SQL statement
|
| 442 |
+
placeholders = ", ".join(
|
| 443 |
+
["(" + ", ".join(["?"] * len(new_data[0])) + ")"] * len(new_data)
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
# Flatten the list of tuples for parameter binding
|
| 447 |
+
flat_data = [item for sublist in new_data for item in sublist]
|
| 448 |
+
|
| 449 |
+
# Perform the insertion
|
| 450 |
+
if flat_data:
|
| 451 |
+
columns = "(id, name, age, email, registration_date, last_login, account_balance)"
|
| 452 |
+
connection.execute(
|
| 453 |
+
f"INSERT INTO {table_name} {columns} VALUES {placeholders}",
|
| 454 |
+
flat_data,
|
| 455 |
+
)
|
| 456 |
+
return len(new_data)
|
| 457 |
+
return 0
|
| 458 |
+
return (safe_insert,)
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
@app.cell
|
| 462 |
+
def _():
|
| 463 |
+
# Prepare the data
|
| 464 |
+
user_data = [
|
| 465 |
+
(
|
| 466 |
+
1,
|
| 467 |
+
"Alice",
|
| 468 |
+
25,
|
| 469 |
+
"alice@example.com",
|
| 470 |
+
"2021-01-01",
|
| 471 |
+
"2023-01-15 14:30:00",
|
| 472 |
+
1250.75,
|
| 473 |
+
),
|
| 474 |
+
(
|
| 475 |
+
2,
|
| 476 |
+
"Bob",
|
| 477 |
+
30,
|
| 478 |
+
"bob@example.com",
|
| 479 |
+
"2021-02-01",
|
| 480 |
+
"2023-02-10 09:15:22",
|
| 481 |
+
750.50,
|
| 482 |
+
),
|
| 483 |
+
(
|
| 484 |
+
3,
|
| 485 |
+
"Charlie",
|
| 486 |
+
35,
|
| 487 |
+
"charlie@example.com",
|
| 488 |
+
"2021-03-01",
|
| 489 |
+
"2023-03-05 17:45:10",
|
| 490 |
+
3200.25,
|
| 491 |
+
),
|
| 492 |
+
(
|
| 493 |
+
4,
|
| 494 |
+
"David",
|
| 495 |
+
40,
|
| 496 |
+
"david@example.com",
|
| 497 |
+
"2021-04-01",
|
| 498 |
+
"2023-04-20 10:30:45",
|
| 499 |
+
1800.00,
|
| 500 |
+
),
|
| 501 |
+
(
|
| 502 |
+
5,
|
| 503 |
+
"Emma",
|
| 504 |
+
45,
|
| 505 |
+
"emma@example.com",
|
| 506 |
+
"2021-05-01",
|
| 507 |
+
"2023-05-12 11:20:30",
|
| 508 |
+
2500.00,
|
| 509 |
+
),
|
| 510 |
+
(
|
| 511 |
+
6,
|
| 512 |
+
"Frank",
|
| 513 |
+
50,
|
| 514 |
+
"frank@example.com",
|
| 515 |
+
"2021-06-01",
|
| 516 |
+
"2023-06-18 16:10:15",
|
| 517 |
+
900.25,
|
| 518 |
+
),
|
| 519 |
+
]
|
| 520 |
+
return (user_data,)
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
@app.cell
|
| 524 |
+
def _(mo, new_memory_db, safe_insert, user_data):
|
| 525 |
+
# Safely insert data into memory database
|
| 526 |
+
records_inserted = safe_insert(new_memory_db, "users_memory", user_data)
|
| 527 |
+
mo.md(
|
| 528 |
+
f"""
|
| 529 |
+
Inserted {records_inserted} new records into users_memory.
|
| 530 |
+
"""
|
| 531 |
+
)
|
| 532 |
+
return
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
@app.cell
|
| 536 |
+
def _(file_db, safe_insert, user_data):
|
| 537 |
+
def _():
|
| 538 |
+
# Safely insert data into file database
|
| 539 |
+
records_inserted = safe_insert(file_db, "users_file", user_data)
|
| 540 |
+
return print(f"Inserted {records_inserted} new records into users_file")
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
_()
|
| 544 |
+
return
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
@app.cell
|
| 548 |
+
def _():
|
| 549 |
+
# If you need to add just one record, you can use a similar approach:
|
| 550 |
+
new_user = (
|
| 551 |
+
7,
|
| 552 |
+
"Grace",
|
| 553 |
+
28,
|
| 554 |
+
"grace@example.com",
|
| 555 |
+
"2021-07-01",
|
| 556 |
+
"2023-07-22 13:45:10",
|
| 557 |
+
1675.50,
|
| 558 |
+
)
|
| 559 |
+
return (new_user,)
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
@app.cell
|
| 563 |
+
def _(new_memory_db, new_user):
|
| 564 |
+
# Check if the ID exists before inserting
|
| 565 |
+
if not new_memory_db.execute(
|
| 566 |
+
"SELECT id FROM users_memory WHERE id = ?", [new_user[0]]
|
| 567 |
+
).fetchone():
|
| 568 |
+
new_memory_db.execute(
|
| 569 |
+
"""
|
| 570 |
+
INSERT INTO users_memory (id, name, age, email, registration_date, last_login, account_balance)
|
| 571 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
| 572 |
+
""",
|
| 573 |
+
new_user,
|
| 574 |
+
)
|
| 575 |
+
print(f"Added user {new_user[1]} to users_memory")
|
| 576 |
+
else:
|
| 577 |
+
print(f"User with ID {new_user[0]} already exists in users_memory")
|
| 578 |
+
return
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
@app.cell
|
| 582 |
+
def _(file_db, new_user):
|
| 583 |
+
# Do the same for the file database
|
| 584 |
+
if not file_db.execute(
|
| 585 |
+
"SELECT id FROM users_file WHERE id = ?", [new_user[0]]
|
| 586 |
+
).fetchone():
|
| 587 |
+
file_db.execute(
|
| 588 |
+
"""
|
| 589 |
+
INSERT INTO users_file (id, name, age, email, registration_date, last_login, account_balance)
|
| 590 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
| 591 |
+
""",
|
| 592 |
+
new_user,
|
| 593 |
+
)
|
| 594 |
+
print(f"Added user {new_user[1]} to users_file")
|
| 595 |
+
else:
|
| 596 |
+
print(f"User with ID {new_user[0]} already exists in users_file")
|
| 597 |
+
return
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
@app.cell
|
| 601 |
+
def _(new_memory_db):
|
| 602 |
+
# First try to update
|
| 603 |
+
cursor = new_memory_db.execute(
|
| 604 |
+
"""
|
| 605 |
+
UPDATE users_memory
|
| 606 |
+
SET name = ?, age = ?, email = ?,
|
| 607 |
+
registration_date = ?, last_login = ?, account_balance = ?
|
| 608 |
+
WHERE id = ?
|
| 609 |
+
""",
|
| 610 |
+
(
|
| 611 |
+
"Henry",
|
| 612 |
+
33,
|
| 613 |
+
"henry@example.com",
|
| 614 |
+
"2021-08-01",
|
| 615 |
+
"2023-08-05 09:10:15",
|
| 616 |
+
3100.75,
|
| 617 |
+
8, # ID should be the last parameter
|
| 618 |
+
),
|
| 619 |
+
)
|
| 620 |
+
return (cursor,)
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
@app.cell
|
| 624 |
+
def _(cursor, mo, new_memory_db):
|
| 625 |
+
# If no rows were updated, perform an insert
|
| 626 |
+
if cursor.rowcount == 0:
|
| 627 |
+
new_memory_db.execute(
|
| 628 |
+
"""
|
| 629 |
+
INSERT INTO users_memory
|
| 630 |
+
(id, name, age, email, registration_date, last_login, account_balance)
|
| 631 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
| 632 |
+
""",
|
| 633 |
+
(
|
| 634 |
+
8,
|
| 635 |
+
"Henry",
|
| 636 |
+
33,
|
| 637 |
+
"henry@example.com",
|
| 638 |
+
"2021-08-01",
|
| 639 |
+
"2023-08-05 09:10:15",
|
| 640 |
+
3100.75,
|
| 641 |
+
),
|
| 642 |
+
)
|
| 643 |
+
|
| 644 |
+
mo.md(
|
| 645 |
+
f"""
|
| 646 |
+
Upserted Henry into users_memory.
|
| 647 |
+
"""
|
| 648 |
+
)
|
| 649 |
+
return
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
@app.cell
|
| 653 |
+
def _(file_db, mo):
|
| 654 |
+
# For DuckDB using ON CONFLICT, we need to specify the conflict target column
|
| 655 |
+
file_db.execute(
|
| 656 |
+
"""
|
| 657 |
+
INSERT INTO users_file (id, name, age, email, registration_date, last_login, account_balance)
|
| 658 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
| 659 |
+
ON CONFLICT (id) DO UPDATE SET
|
| 660 |
+
name = EXCLUDED.name,
|
| 661 |
+
age = EXCLUDED.age,
|
| 662 |
+
email = EXCLUDED.email,
|
| 663 |
+
registration_date = EXCLUDED.registration_date,
|
| 664 |
+
last_login = EXCLUDED.last_login,
|
| 665 |
+
account_balance = EXCLUDED.account_balance
|
| 666 |
+
""",
|
| 667 |
+
(
|
| 668 |
+
8,
|
| 669 |
+
"Henry",
|
| 670 |
+
33,
|
| 671 |
+
"henry@example.com",
|
| 672 |
+
"2021-08-01",
|
| 673 |
+
"2023-08-05 09:10:15",
|
| 674 |
+
3100.75,
|
| 675 |
+
),
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
mo.md(
|
| 679 |
+
f"""
|
| 680 |
+
Upserted Henry into users_file.
|
| 681 |
+
"""
|
| 682 |
+
)
|
| 683 |
+
return
|
| 684 |
+
|
| 685 |
+
|
| 686 |
+
@app.cell
|
| 687 |
+
def _view_tables_after_insert(new_memory_db):
|
| 688 |
+
# Display memory data using DuckDB's query capabilities
|
| 689 |
+
memory_results = new_memory_db.execute("""
|
| 690 |
+
SELECT
|
| 691 |
+
id,
|
| 692 |
+
name,
|
| 693 |
+
age,
|
| 694 |
+
email,
|
| 695 |
+
registration_date,
|
| 696 |
+
last_login,
|
| 697 |
+
account_balance
|
| 698 |
+
FROM users_memory
|
| 699 |
+
ORDER BY id
|
| 700 |
+
""").df()
|
| 701 |
+
return (memory_results,)
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
@app.cell
|
| 705 |
+
def _(file_db):
|
| 706 |
+
# Display file data with formatting
|
| 707 |
+
file_results = file_db.execute("""
|
| 708 |
+
SELECT
|
| 709 |
+
id,
|
| 710 |
+
name,
|
| 711 |
+
age,
|
| 712 |
+
email,
|
| 713 |
+
registration_date,
|
| 714 |
+
last_login,
|
| 715 |
+
CAST(account_balance AS DECIMAL(10,2)) AS account_balance
|
| 716 |
+
FROM users_file
|
| 717 |
+
ORDER BY id
|
| 718 |
+
""").df()
|
| 719 |
+
return (file_results,)
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
@app.cell
|
| 723 |
+
def _(mo):
|
| 724 |
+
mo.md(
|
| 725 |
+
r"""
|
| 726 |
+
<!-- Create an interactive display with tabs using marimo components -->
|
| 727 |
+
## 📊 Database Contents After Insertion
|
| 728 |
+
"""
|
| 729 |
+
)
|
| 730 |
+
return
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
@app.cell(hide_code=True)
|
| 734 |
+
def _(file_results, memory_results, mo):
|
| 735 |
+
tabs = mo.ui.tabs(
|
| 736 |
+
{
|
| 737 |
+
"In-Memory Database": mo.ui.table(memory_results),
|
| 738 |
+
"File-Based Database": mo.ui.table(file_results),
|
| 739 |
+
}
|
| 740 |
+
)
|
| 741 |
+
tabs
|
| 742 |
+
return
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
@app.cell(hide_code=True)
|
| 746 |
+
def _(mo):
|
| 747 |
+
mo.md(
|
| 748 |
+
r"""
|
| 749 |
+
# [4. Using SQL Directly in Marimo](https://duckdb.org/docs/stable/sql/query_syntax/select)
|
| 750 |
+
|
| 751 |
+
There are multiple ways to leverage DuckDB's SQL capabilities in marimo:
|
| 752 |
+
|
| 753 |
+
1. **Direct execution**: Using DuckDB connections to execute SQL
|
| 754 |
+
2. **Marimo SQL**: Using Marimo's built-in SQL engine
|
| 755 |
+
3. **Interactive queries**: Combining UI elements with SQL execution
|
| 756 |
+
|
| 757 |
+
Let's explore these approaches:
|
| 758 |
+
"""
|
| 759 |
+
)
|
| 760 |
+
return
|
| 761 |
+
|
| 762 |
+
|
| 763 |
+
@app.cell(hide_code=True)
|
| 764 |
+
def _sql_with_marimo(mo):
|
| 765 |
+
mo.md(
|
| 766 |
+
rf"""
|
| 767 |
+
<!-- Using Marimo's SQL engine with direct SQL on memory_results DataFrame -->
|
| 768 |
+
## 🔍 Query with Marimo SQL
|
| 769 |
+
"""
|
| 770 |
+
)
|
| 771 |
+
return
|
| 772 |
|
| 773 |
|
| 774 |
@app.cell(hide_code=True)
|
| 775 |
+
def _(mo):
|
| 776 |
mo.md(
|
| 777 |
+
rf"""
|
| 778 |
+
## Marimo has its own built-in SQL engine that can work with DataFrames.
|
| 779 |
+
Let's use it to filter our users:
|
| 780 |
+
"""
|
| 781 |
+
)
|
| 782 |
+
return
|
| 783 |
+
|
| 784 |
+
|
| 785 |
+
@app.cell
|
| 786 |
+
def _(mo):
|
| 787 |
+
# Create a SQL selector for users with age threshold
|
| 788 |
+
age_threshold = mo.ui.slider(25, 50, value=30, label="Minimum Age")
|
| 789 |
+
return (age_threshold,)
|
| 790 |
+
|
| 791 |
|
| 792 |
+
@app.cell
|
| 793 |
+
def _(age_threshold, memory_results, mo):
|
| 794 |
+
# Create a function to filter users based on the slider value
|
| 795 |
+
def filtered_users():
|
| 796 |
+
# Use DuckDB directly instead of mo.sql with users param
|
| 797 |
+
filtered_df = memory_results[memory_results["age"] >= age_threshold.value]
|
| 798 |
+
filtered_df = filtered_df.sort_values("age")
|
| 799 |
+
return mo.ui.table(filtered_df)
|
| 800 |
+
return (filtered_users,)
|
| 801 |
|
|
|
|
| 802 |
|
| 803 |
+
@app.cell
|
| 804 |
+
def _(age_threshold, filtered_users, mo):
|
| 805 |
+
layout = mo.vstack(
|
| 806 |
+
[
|
| 807 |
+
mo.md("### Select minimum age:"),
|
| 808 |
+
age_threshold,
|
| 809 |
+
mo.md("### Users meeting age criteria:"),
|
| 810 |
+
filtered_users(),
|
| 811 |
+
],
|
| 812 |
+
gap=1.5,
|
| 813 |
+
)
|
| 814 |
+
layout
|
| 815 |
+
return
|
| 816 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 817 |
|
| 818 |
+
@app.cell(hide_code=True)
|
| 819 |
+
def _(mo):
|
| 820 |
+
mo.md(r"""# [5. Working with Polars and DuckDB](https://duckdb.org/docs/stable/guides/python/polars.html)""")
|
| 821 |
+
return
|
| 822 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 823 |
|
| 824 |
+
@app.cell
|
| 825 |
+
def _polars_integration(pl):
|
| 826 |
+
# Create a Polars DataFrame
|
| 827 |
+
polars_df = pl.DataFrame(
|
| 828 |
+
{
|
| 829 |
+
"id": [101, 102, 103],
|
| 830 |
+
"name": ["Product A", "Product B", "Product C"],
|
| 831 |
+
"price": [29.99, 49.99, 19.99],
|
| 832 |
+
"category": ["Electronics", "Furniture", "Books"],
|
| 833 |
+
}
|
| 834 |
+
)
|
| 835 |
+
return (polars_df,)
|
| 836 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 837 |
|
| 838 |
+
@app.cell
|
| 839 |
+
def _(mo):
|
| 840 |
+
mo.md(
|
| 841 |
+
rf"""
|
| 842 |
+
<!-- Display the Polars DataFrame -->
|
| 843 |
+
## Original Polars DataFrame:
|
| 844 |
+
"""
|
| 845 |
)
|
| 846 |
return
|
| 847 |
|
| 848 |
|
| 849 |
+
@app.cell
|
| 850 |
+
def _(mo, polars_df):
|
| 851 |
+
mo.ui.table(polars_df)
|
| 852 |
+
return
|
| 853 |
+
|
| 854 |
+
|
| 855 |
+
@app.cell
|
| 856 |
+
def _(new_memory_db, polars_df):
|
| 857 |
+
# Register the Polars DataFrame as a DuckDB table in memory connection
|
| 858 |
+
new_memory_db.register("products_polars", polars_df)
|
| 859 |
+
|
| 860 |
+
# Query the registered table
|
| 861 |
+
polars_query_result = new_memory_db.execute(
|
| 862 |
+
"SELECT * FROM products_polars WHERE price > 25"
|
| 863 |
+
).df()
|
| 864 |
+
return (polars_query_result,)
|
| 865 |
+
|
| 866 |
+
|
| 867 |
@app.cell(hide_code=True)
|
| 868 |
def _(mo):
|
| 869 |
mo.md(
|
| 870 |
r"""
|
| 871 |
+
<!-- Display the query result -->
|
| 872 |
+
## DuckDB Query Result (From Polars Data):
|
| 873 |
+
"""
|
|
|
|
| 874 |
)
|
| 875 |
return
|
| 876 |
|
| 877 |
|
| 878 |
@app.cell
|
| 879 |
+
def _(mo, polars_query_result):
|
| 880 |
+
mo.ui.table(polars_query_result)
|
| 881 |
+
return
|
| 882 |
+
|
| 883 |
+
|
| 884 |
+
@app.cell
|
| 885 |
+
def _(mo, new_memory_db):
|
| 886 |
+
# Demonstrate a more complex query
|
| 887 |
+
complex_query_result = new_memory_db.execute("""
|
| 888 |
+
SELECT
|
| 889 |
+
category,
|
| 890 |
+
COUNT(*) as product_count,
|
| 891 |
+
AVG(price) as avg_price,
|
| 892 |
+
MIN(price) as min_price,
|
| 893 |
+
MAX(price) as max_price
|
| 894 |
+
FROM products_polars
|
| 895 |
+
GROUP BY category
|
| 896 |
+
ORDER BY avg_price DESC
|
| 897 |
+
""").df()
|
| 898 |
+
|
| 899 |
+
mo.md("## Aggregated Product Data by Category:")
|
| 900 |
+
return (complex_query_result,)
|
| 901 |
+
|
| 902 |
+
|
| 903 |
+
@app.cell
|
| 904 |
+
def _(complex_query_result, mo):
|
| 905 |
+
mo.ui.table(complex_query_result)
|
| 906 |
+
return
|
| 907 |
|
| 908 |
|
| 909 |
@app.cell(hide_code=True)
|
| 910 |
def _(mo):
|
| 911 |
+
mo.md(r"""# [6. Advanced Queries: Joins Between Tables](https://duckdb.org/docs/stable/guides/performance/join_operations.html)""")
|
|
|
|
|
|
|
| 912 |
return
|
| 913 |
|
| 914 |
|
| 915 |
@app.cell
|
| 916 |
+
def _join_operations(new_memory_db):
|
| 917 |
+
# Create another table to join with
|
| 918 |
+
new_memory_db.execute("""
|
| 919 |
+
CREATE TABLE IF NOT EXISTS departments (
|
| 920 |
id INTEGER,
|
| 921 |
+
department_name VARCHAR,
|
| 922 |
+
manager_id INTEGER
|
|
|
|
| 923 |
)
|
| 924 |
+
""")
|
| 925 |
+
return
|
| 926 |
+
|
| 927 |
+
|
| 928 |
+
@app.cell
|
| 929 |
+
def _(new_memory_db):
|
| 930 |
+
new_memory_db.execute("""
|
| 931 |
+
INSERT INTO departments VALUES
|
| 932 |
+
(101, 'Engineering', 1),
|
| 933 |
+
(102, 'Marketing', 2),
|
| 934 |
+
(103, 'Finance', NULL)
|
| 935 |
+
""")
|
| 936 |
+
return
|
| 937 |
+
|
| 938 |
+
|
| 939 |
+
@app.cell
|
| 940 |
+
def _(new_memory_db):
|
| 941 |
+
# Execute a join query
|
| 942 |
+
join_result = new_memory_db.execute("""
|
| 943 |
+
SELECT
|
| 944 |
+
u.id,
|
| 945 |
+
u.name,
|
| 946 |
+
u.age,
|
| 947 |
+
d.department_name
|
| 948 |
+
FROM users_memory u
|
| 949 |
+
LEFT JOIN departments d ON u.id = d.manager_id
|
| 950 |
+
ORDER BY u.id
|
| 951 |
+
""").df()
|
| 952 |
+
return (join_result,)
|
| 953 |
+
|
| 954 |
+
|
| 955 |
+
@app.cell(hide_code=True)
|
| 956 |
+
def _(mo):
|
| 957 |
+
mo.md(
|
| 958 |
+
rf"""
|
| 959 |
+
<!-- Display the join result -->
|
| 960 |
+
## Join Result (Users and Departments):
|
| 961 |
"""
|
| 962 |
)
|
| 963 |
return
|
| 964 |
|
| 965 |
|
| 966 |
+
@app.cell
|
| 967 |
+
def _(join_result, mo):
|
| 968 |
+
mo.ui.table(join_result)
|
| 969 |
+
return
|
| 970 |
+
|
| 971 |
+
|
| 972 |
@app.cell(hide_code=True)
|
| 973 |
def _(mo):
|
| 974 |
mo.md(
|
| 975 |
+
rf"""
|
| 976 |
+
<!-- Demonstrate different types of joins -->
|
| 977 |
+
## Different Types of Joins
|
| 978 |
+
"""
|
| 979 |
)
|
| 980 |
return
|
| 981 |
|
| 982 |
|
| 983 |
@app.cell
|
| 984 |
+
def _(new_memory_db):
|
| 985 |
+
# Inner join
|
| 986 |
+
inner_join = new_memory_db.execute("""
|
| 987 |
+
SELECT u.id, u.name, d.department_name
|
| 988 |
+
FROM users_memory u
|
| 989 |
+
INNER JOIN departments d ON u.id = d.manager_id
|
| 990 |
+
""").df()
|
| 991 |
+
|
| 992 |
+
# Right join
|
| 993 |
+
right_join = new_memory_db.execute("""
|
| 994 |
+
SELECT u.id, u.name, d.department_name
|
| 995 |
+
FROM users_memory u
|
| 996 |
+
RIGHT JOIN departments d ON u.id = d.manager_id
|
| 997 |
+
""").df()
|
| 998 |
+
|
| 999 |
+
# Full outer join
|
| 1000 |
+
full_join = new_memory_db.execute("""
|
| 1001 |
+
SELECT u.id, u.name, d.department_name
|
| 1002 |
+
FROM users_memory u
|
| 1003 |
+
FULL OUTER JOIN departments d ON u.id = d.manager_id
|
| 1004 |
+
""").df()
|
| 1005 |
+
return full_join, inner_join, right_join
|
| 1006 |
+
|
| 1007 |
+
|
| 1008 |
+
@app.cell
|
| 1009 |
+
def _(full_join, inner_join, join_result, mo, right_join):
|
| 1010 |
+
join_tabs = mo.ui.tabs(
|
| 1011 |
+
{
|
| 1012 |
+
"Left Join": mo.ui.table(join_result),
|
| 1013 |
+
"Inner Join": mo.ui.table(inner_join),
|
| 1014 |
+
"Right Join": mo.ui.table(right_join),
|
| 1015 |
+
"Full Outer Join": mo.ui.table(full_join),
|
| 1016 |
+
}
|
| 1017 |
)
|
| 1018 |
+
|
| 1019 |
+
join_tabs
|
| 1020 |
+
return
|
| 1021 |
+
|
| 1022 |
+
|
| 1023 |
+
@app.cell(hide_code=True)
|
| 1024 |
+
def _(mo):
|
| 1025 |
+
mo.md(r"""# [7. Aggregate Functions in DuckDB](https://duckdb.org/docs/stable/sql/functions/aggregates.html)""")
|
| 1026 |
return
|
| 1027 |
|
| 1028 |
|
| 1029 |
+
@app.cell
|
| 1030 |
+
def _aggregate_operations(new_memory_db):
|
| 1031 |
+
# Execute an aggregate query
|
| 1032 |
+
agg_result = new_memory_db.execute("""
|
| 1033 |
+
SELECT
|
| 1034 |
+
AVG(age) as avg_age,
|
| 1035 |
+
MAX(age) as max_age,
|
| 1036 |
+
MIN(age) as min_age,
|
| 1037 |
+
COUNT(*) as total_users,
|
| 1038 |
+
SUM(account_balance) as total_balance
|
| 1039 |
+
FROM users_memory
|
| 1040 |
+
""").df()
|
| 1041 |
+
return (agg_result,)
|
| 1042 |
+
|
| 1043 |
+
|
| 1044 |
@app.cell(hide_code=True)
|
| 1045 |
def _(mo):
|
| 1046 |
mo.md(
|
| 1047 |
+
rf"""
|
| 1048 |
+
<!-- Display the aggregate result -->
|
| 1049 |
+
## Aggregate Results (All Users):
|
| 1050 |
+
"""
|
| 1051 |
)
|
| 1052 |
return
|
| 1053 |
|
| 1054 |
|
| 1055 |
@app.cell
|
| 1056 |
+
def _(agg_result, mo):
|
| 1057 |
+
mo.ui.table(agg_result)
|
| 1058 |
+
return
|
|
|
|
|
|
|
|
|
|
| 1059 |
|
| 1060 |
|
| 1061 |
@app.cell(hide_code=True)
|
| 1062 |
def _(mo):
|
| 1063 |
mo.md(
|
| 1064 |
+
rf"""
|
| 1065 |
+
<!-- More complex aggregate query with grouping -->
|
| 1066 |
+
## Aggregate Results (Grouped by Age Range):
|
| 1067 |
+
"""
|
| 1068 |
)
|
| 1069 |
return
|
| 1070 |
|
| 1071 |
|
| 1072 |
@app.cell
|
| 1073 |
+
def _(new_memory_db):
|
| 1074 |
+
age_groups = new_memory_db.execute("""
|
| 1075 |
+
SELECT
|
| 1076 |
+
CASE
|
| 1077 |
+
WHEN age < 30 THEN 'Under 30'
|
| 1078 |
+
WHEN age BETWEEN 30 AND 40 THEN '30 to 40'
|
| 1079 |
+
ELSE 'Over 40'
|
| 1080 |
+
END as age_group,
|
| 1081 |
+
COUNT(*) as count,
|
| 1082 |
+
AVG(age) as avg_age,
|
| 1083 |
+
AVG(account_balance) as avg_balance
|
| 1084 |
+
FROM users_memory
|
| 1085 |
+
GROUP BY 1
|
| 1086 |
+
ORDER BY 1
|
| 1087 |
+
""").df()
|
| 1088 |
+
return (age_groups,)
|
| 1089 |
+
|
| 1090 |
+
|
| 1091 |
+
@app.cell
|
| 1092 |
+
def _(age_groups, mo):
|
| 1093 |
+
mo.ui.table(age_groups)
|
| 1094 |
+
return
|
| 1095 |
+
|
| 1096 |
+
|
| 1097 |
+
@app.cell
|
| 1098 |
+
def _(mo):
|
| 1099 |
+
mo.md(
|
| 1100 |
+
r"""
|
| 1101 |
+
<!-- Window functions demo -->
|
| 1102 |
+
### Window Functions Example:
|
| 1103 |
+
"""
|
| 1104 |
)
|
| 1105 |
+
return
|
| 1106 |
+
|
| 1107 |
|
| 1108 |
+
@app.cell
|
| 1109 |
+
def _(mo, new_memory_db):
|
| 1110 |
+
window_result = new_memory_db.execute("""
|
| 1111 |
+
SELECT
|
| 1112 |
+
id,
|
| 1113 |
+
name,
|
| 1114 |
+
age,
|
| 1115 |
+
account_balance,
|
| 1116 |
+
RANK() OVER (ORDER BY account_balance DESC) as balance_rank,
|
| 1117 |
+
account_balance - AVG(account_balance) OVER () as diff_from_avg,
|
| 1118 |
+
account_balance / SUM(account_balance) OVER () * 100 as pct_of_total
|
| 1119 |
+
FROM users_memory
|
| 1120 |
+
ORDER BY balance_rank
|
| 1121 |
+
""").df()
|
| 1122 |
+
|
| 1123 |
+
mo.ui.table(window_result)
|
| 1124 |
+
return
|
| 1125 |
+
|
| 1126 |
+
|
| 1127 |
+
@app.cell(hide_code=True)
|
| 1128 |
+
def _(mo):
|
| 1129 |
+
mo.md(r"""# [8. Converting DuckDB Results to Polars/Pandas](https://duckdb.org/docs/stable/guides/python/polars.html)""")
|
| 1130 |
+
return
|
| 1131 |
|
| 1132 |
+
|
| 1133 |
+
@app.cell
|
| 1134 |
+
def _convert_results(new_memory_db):
|
| 1135 |
+
polars_result = new_memory_db.execute(
|
| 1136 |
+
"""SELECT * FROM users_memory WHERE age > 25 ORDER BY age"""
|
| 1137 |
+
).pl()
|
| 1138 |
+
return (polars_result,)
|
|
|
|
| 1139 |
|
| 1140 |
|
| 1141 |
@app.cell(hide_code=True)
|
| 1142 |
def _(mo):
|
| 1143 |
mo.md(
|
| 1144 |
+
r"""
|
| 1145 |
+
<!-- Display the converted results -->
|
| 1146 |
+
## Query Result as Polars DataFrame:
|
| 1147 |
+
"""
|
| 1148 |
)
|
| 1149 |
return
|
| 1150 |
|
| 1151 |
|
| 1152 |
@app.cell
|
| 1153 |
+
def _(mo, polars_result):
|
| 1154 |
+
mo.ui.table(polars_result)
|
| 1155 |
+
return
|
| 1156 |
+
|
| 1157 |
+
|
| 1158 |
+
@app.cell
|
| 1159 |
+
def _(new_memory_db):
|
| 1160 |
+
pandas_result = new_memory_db.execute(
|
| 1161 |
+
"""SELECT * FROM users_memory WHERE age > 25 ORDER BY age"""
|
| 1162 |
+
).fetch_df()
|
| 1163 |
+
return (pandas_result,)
|
| 1164 |
+
|
| 1165 |
+
|
| 1166 |
+
@app.cell(hide_code=True)
|
| 1167 |
+
def _(mo):
|
| 1168 |
+
mo.md(r"""## Same Query Result as Pandas DataFrame:""")
|
| 1169 |
+
return
|
| 1170 |
+
|
| 1171 |
+
|
| 1172 |
+
@app.cell
|
| 1173 |
+
def _(mo, pandas_result):
|
| 1174 |
+
mo.ui.table(pandas_result)
|
| 1175 |
+
return
|
| 1176 |
+
|
| 1177 |
+
|
| 1178 |
+
@app.cell(hide_code=True)
|
| 1179 |
+
def _(mo):
|
| 1180 |
+
mo.md(
|
| 1181 |
+
r"""
|
| 1182 |
+
<!-- Demonstrate the differences in handling -->
|
| 1183 |
+
## Differences in DataFrame Handling
|
| 1184 |
"""
|
| 1185 |
)
|
| 1186 |
+
return
|
|
|
|
|
|
|
|
|
|
| 1187 |
|
| 1188 |
|
| 1189 |
@app.cell(hide_code=True)
|
| 1190 |
def _(mo):
|
| 1191 |
mo.md(
|
| 1192 |
+
r"""
|
| 1193 |
+
<!-- Polars operation -->
|
| 1194 |
+
## Polars: Filter users over 35 and calculate average balance
|
| 1195 |
+
"""
|
| 1196 |
)
|
| 1197 |
return
|
| 1198 |
|
| 1199 |
|
| 1200 |
@app.cell
|
| 1201 |
+
def _(mo, pl, polars_result):
|
| 1202 |
+
def _():
|
| 1203 |
+
polars_filtered = polars_result.filter(pl.col("age") > 35)
|
| 1204 |
+
polars_avg = polars_filtered.select(
|
| 1205 |
+
pl.col("account_balance").mean().alias("avg_balance")
|
| 1206 |
+
)
|
| 1207 |
+
|
| 1208 |
+
layout = mo.vstack(
|
| 1209 |
+
[
|
| 1210 |
+
mo.md("### Filtered Polars DataFrame (Age > 35):"),
|
| 1211 |
+
mo.ui.table(polars_filtered),
|
| 1212 |
+
mo.md("### Average Account Balance:"),
|
| 1213 |
+
mo.ui.table(polars_avg),
|
| 1214 |
+
],
|
| 1215 |
+
gap=1.5,
|
| 1216 |
+
)
|
| 1217 |
+
return layout
|
| 1218 |
+
|
| 1219 |
+
|
| 1220 |
+
_()
|
| 1221 |
+
return
|
| 1222 |
+
|
| 1223 |
+
|
| 1224 |
+
@app.cell(hide_code=True)
|
| 1225 |
+
def _(mo):
|
| 1226 |
+
mo.md(
|
| 1227 |
+
r"""
|
| 1228 |
+
<!-- Pandas equivalent (using pandas style) -->
|
| 1229 |
+
## Pandas: Same operation in pandas style
|
| 1230 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1231 |
)
|
| 1232 |
+
return
|
| 1233 |
+
|
| 1234 |
+
|
| 1235 |
+
@app.cell
|
| 1236 |
+
def _(mo, pandas_result):
|
| 1237 |
+
pandas_avg = pandas_result[pandas_result["age"] > 35]["account_balance"].mean()
|
| 1238 |
+
mo.md(f"Average balance: {pandas_avg:.2f}")
|
| 1239 |
+
return
|
| 1240 |
+
|
| 1241 |
+
|
| 1242 |
+
@app.cell(hide_code=True)
|
| 1243 |
+
def _(mo):
|
| 1244 |
+
mo.md("""## 9. Data Visualization with DuckDB and Plotly""")
|
| 1245 |
+
return
|
| 1246 |
+
|
| 1247 |
+
|
| 1248 |
+
@app.cell
|
| 1249 |
+
def _(age_groups, mo, new_memory_db, plotly_express):
|
| 1250 |
+
# User distribution by age group
|
| 1251 |
+
fig1 = plotly_express.bar(
|
| 1252 |
+
age_groups,
|
| 1253 |
+
x="age_group",
|
| 1254 |
+
y="count",
|
| 1255 |
+
title="User Distribution by Age Group",
|
| 1256 |
+
labels={"count": "Number of Users", "age_group": "Age Group"},
|
| 1257 |
+
color="age_group",
|
| 1258 |
+
color_discrete_sequence=plotly_express.colors.qualitative.Plotly,
|
| 1259 |
+
)
|
| 1260 |
+
fig1.update_traces(
|
| 1261 |
+
text=age_groups["count"],
|
| 1262 |
+
textposition="outside",
|
| 1263 |
+
)
|
| 1264 |
+
fig1.update_layout(height=450, margin=dict(t=50, b=50))
|
| 1265 |
+
|
| 1266 |
+
|
| 1267 |
+
# Average balance by age group
|
| 1268 |
+
fig2 = plotly_express.bar(
|
| 1269 |
+
age_groups,
|
| 1270 |
+
x="age_group",
|
| 1271 |
+
y="avg_balance",
|
| 1272 |
+
title="Average Account Balance by Age Group",
|
| 1273 |
+
labels={"avg_balance": "Average Balance ($)", "age_group": "Age Group"},
|
| 1274 |
+
color="age_group",
|
| 1275 |
+
color_discrete_sequence=plotly_express.colors.qualitative.Plotly,
|
| 1276 |
+
)
|
| 1277 |
+
fig2.update_traces(
|
| 1278 |
+
text=[f"${val:.2f}" for val in age_groups["avg_balance"]],
|
| 1279 |
+
textposition="outside",
|
| 1280 |
+
)
|
| 1281 |
+
fig2.update_layout(height=450, margin=dict(t=50, b=50))
|
| 1282 |
+
|
| 1283 |
+
|
| 1284 |
+
# Age vs Account Balance scatter plot
|
| 1285 |
+
scatter_data = new_memory_db.execute(
|
| 1286 |
+
"""
|
| 1287 |
+
SELECT
|
| 1288 |
+
name,
|
| 1289 |
+
age,
|
| 1290 |
+
account_balance
|
| 1291 |
+
FROM users_memory
|
| 1292 |
+
ORDER BY age
|
| 1293 |
+
"""
|
| 1294 |
+
).df()
|
| 1295 |
+
|
| 1296 |
+
fig3 = plotly_express.scatter(
|
| 1297 |
+
scatter_data,
|
| 1298 |
+
x="age",
|
| 1299 |
+
y="account_balance",
|
| 1300 |
+
title="Age vs. Account Balance",
|
| 1301 |
+
labels={"account_balance": "Account Balance ($)", "age": "Age"},
|
| 1302 |
+
color_discrete_sequence=["#FF7F0E"],
|
| 1303 |
+
trendline="ols",
|
| 1304 |
+
hover_data=["age", "account_balance"],
|
| 1305 |
+
size_max=15,
|
| 1306 |
+
)
|
| 1307 |
+
fig3.update_traces(marker=dict(size=12))
|
| 1308 |
+
fig3.update_layout(height=450, margin=dict(t=50, b=50))
|
| 1309 |
+
|
| 1310 |
+
|
| 1311 |
+
# Distribution of account balances
|
| 1312 |
+
balance_data = new_memory_db.execute(
|
| 1313 |
+
"""
|
| 1314 |
+
SELECT
|
| 1315 |
+
name,
|
| 1316 |
+
account_balance
|
| 1317 |
+
FROM users_memory
|
| 1318 |
+
ORDER BY account_balance DESC
|
| 1319 |
+
"""
|
| 1320 |
+
).df()
|
| 1321 |
+
|
| 1322 |
+
fig4 = plotly_express.pie(
|
| 1323 |
+
balance_data,
|
| 1324 |
+
names="name",
|
| 1325 |
+
values="account_balance",
|
| 1326 |
+
title="Distribution of Account Balances",
|
| 1327 |
+
labels={"account_balance": "Account Balance ($)", "name": "User"},
|
| 1328 |
+
color_discrete_sequence=plotly_express.colors.qualitative.Pastel,
|
| 1329 |
+
)
|
| 1330 |
+
fig4.update_traces(textinfo="percent+label", textposition="inside")
|
| 1331 |
+
fig4.update_layout(height=450, margin=dict(t=50, b=50))
|
| 1332 |
+
|
| 1333 |
+
|
| 1334 |
+
category_tabs = mo.ui.tabs(
|
| 1335 |
+
{
|
| 1336 |
+
"Age Group Analysis": mo.vstack(
|
| 1337 |
+
[
|
| 1338 |
+
mo.ui.tabs(
|
| 1339 |
+
{
|
| 1340 |
+
"User Distribution": mo.ui.plotly(fig1),
|
| 1341 |
+
"Average Balance": mo.ui.plotly(fig2),
|
| 1342 |
+
}
|
| 1343 |
+
)
|
| 1344 |
+
]
|
| 1345 |
+
),
|
| 1346 |
+
"Financial Analysis": mo.vstack(
|
| 1347 |
+
[
|
| 1348 |
+
mo.ui.tabs(
|
| 1349 |
+
{
|
| 1350 |
+
"Age vs Balance": mo.ui.plotly(fig3),
|
| 1351 |
+
"Balance Distribution": mo.ui.plotly(fig4),
|
| 1352 |
+
}
|
| 1353 |
+
)
|
| 1354 |
+
]
|
| 1355 |
+
),
|
| 1356 |
+
},
|
| 1357 |
+
lazy=True,
|
| 1358 |
+
)
|
| 1359 |
+
|
| 1360 |
+
mo.vstack(
|
| 1361 |
+
[
|
| 1362 |
+
mo.md("### Select a visualization category:"),
|
| 1363 |
+
category_tabs,
|
| 1364 |
+
],
|
| 1365 |
+
gap=1.5,
|
| 1366 |
+
)
|
| 1367 |
+
return
|
| 1368 |
|
| 1369 |
|
| 1370 |
@app.cell(hide_code=True)
|
| 1371 |
def _(mo):
|
| 1372 |
mo.md(
|
| 1373 |
+
r"""
|
| 1374 |
+
# [9. Database Management Best Practices]
|
| 1375 |
+
|
| 1376 |
+
### Closing Connections
|
| 1377 |
+
|
| 1378 |
+
It's important to close database connections when you're done with them, especially for file-based connections:
|
| 1379 |
+
|
| 1380 |
+
```python
|
| 1381 |
+
memory_db.close()
|
| 1382 |
+
file_db.close()
|
| 1383 |
+
```
|
| 1384 |
+
|
| 1385 |
+
### Transaction Management
|
| 1386 |
+
|
| 1387 |
+
DuckDB supports transactions, which can be useful for more complex operations:
|
| 1388 |
+
|
| 1389 |
+
```python
|
| 1390 |
+
conn = duckdb.connect('mydb.db')
|
| 1391 |
+
conn.begin() # Start transaction
|
| 1392 |
+
|
| 1393 |
+
try:
|
| 1394 |
+
conn.execute("INSERT INTO users VALUES (1, 'Test User')")
|
| 1395 |
+
conn.execute("UPDATE balances SET amount = amount - 100 WHERE user_id = 1")
|
| 1396 |
+
conn.commit() # Commit changes
|
| 1397 |
+
except:
|
| 1398 |
+
conn.rollback() # Undo changes if error
|
| 1399 |
+
raise
|
| 1400 |
+
```
|
| 1401 |
+
|
| 1402 |
+
### Query Performance
|
| 1403 |
+
|
| 1404 |
+
DuckDB is optimized for analytical queries. For best performance:
|
| 1405 |
+
|
| 1406 |
+
- Use appropriate data types
|
| 1407 |
+
- Create indexes for frequently queried columns
|
| 1408 |
+
- For large datasets, consider partitioning
|
| 1409 |
+
- Use prepared statements for repeated queries
|
| 1410 |
+
"""
|
| 1411 |
)
|
| 1412 |
return
|
| 1413 |
|
| 1414 |
|
| 1415 |
+
@app.cell(hide_code=True)
|
| 1416 |
+
def _interactive_dashboard(mo):
|
| 1417 |
+
mo.md(rf"""## 10. Interactive DuckDB Dashboard with Marimo and Plotly""")
|
| 1418 |
+
return
|
| 1419 |
+
|
| 1420 |
+
|
| 1421 |
+
@app.cell
|
| 1422 |
+
def _(mo):
|
| 1423 |
+
# Create an interactive filter for age range
|
| 1424 |
+
min_age = mo.ui.slider(20, 50, value=25, label="Minimum Age")
|
| 1425 |
+
max_age = mo.ui.slider(20, 50, value=50, label="Maximum Age")
|
| 1426 |
+
return max_age, min_age
|
| 1427 |
+
|
| 1428 |
+
|
| 1429 |
+
@app.cell
|
| 1430 |
+
def _(max_age, min_age, new_memory_db):
|
| 1431 |
+
# Create a function to filter data and update visualizations
|
| 1432 |
+
def get_filtered_data(min_val=min_age.value, max_val=max_age.value):
|
| 1433 |
+
# Get filtered data based on slider values using parameterized query for safety
|
| 1434 |
+
return new_memory_db.execute(
|
| 1435 |
+
"""
|
| 1436 |
+
SELECT
|
| 1437 |
+
id,
|
| 1438 |
+
name,
|
| 1439 |
+
age,
|
| 1440 |
+
email,
|
| 1441 |
+
account_balance,
|
| 1442 |
+
registration_date
|
| 1443 |
+
FROM users_memory
|
| 1444 |
+
WHERE age >= ? AND age <= ?
|
| 1445 |
+
ORDER BY age
|
| 1446 |
+
""",
|
| 1447 |
+
[min_val, max_val],
|
| 1448 |
+
).df()
|
| 1449 |
+
return (get_filtered_data,)
|
| 1450 |
+
|
| 1451 |
+
|
| 1452 |
+
@app.cell
|
| 1453 |
+
def _(get_filtered_data):
|
| 1454 |
+
def get_metrics(data=get_filtered_data()):
|
| 1455 |
+
return {
|
| 1456 |
+
"user count": len(data),
|
| 1457 |
+
"avg_balance": data["account_balance"].mean() if len(data) > 0 else 0,
|
| 1458 |
+
"total_balance": data["account_balance"].sum() if len(data) > 0 else 0,
|
| 1459 |
+
}
|
| 1460 |
+
return (get_metrics,)
|
| 1461 |
+
|
| 1462 |
+
|
| 1463 |
+
@app.cell
|
| 1464 |
+
def _(get_metrics, mo):
|
| 1465 |
+
def metrics_display(metrics=get_metrics()):
|
| 1466 |
+
return mo.hstack(
|
| 1467 |
+
[
|
| 1468 |
+
mo.vstack(
|
| 1469 |
+
[
|
| 1470 |
+
mo.md("### Selected Users"),
|
| 1471 |
+
mo.md(f"## {metrics['user count']}"),
|
| 1472 |
+
],
|
| 1473 |
+
align="center",
|
| 1474 |
+
),
|
| 1475 |
+
mo.vstack(
|
| 1476 |
+
[
|
| 1477 |
+
mo.md("### Average Balance"),
|
| 1478 |
+
mo.md(f"## ${metrics['avg_balance']:.2f}"),
|
| 1479 |
+
],
|
| 1480 |
+
align="center",
|
| 1481 |
+
),
|
| 1482 |
+
mo.vstack(
|
| 1483 |
+
[
|
| 1484 |
+
mo.md("### Total Balance"),
|
| 1485 |
+
mo.md(f"## ${metrics['total_balance']:.2f}"),
|
| 1486 |
+
],
|
| 1487 |
+
align="center",
|
| 1488 |
+
),
|
| 1489 |
+
],
|
| 1490 |
+
justify="space-between",
|
| 1491 |
+
gap=1.5,
|
| 1492 |
+
)
|
| 1493 |
+
return (metrics_display,)
|
| 1494 |
+
|
| 1495 |
+
|
| 1496 |
+
@app.cell
|
| 1497 |
+
def _(get_filtered_data, max_age, min_age, mo, plotly_express):
|
| 1498 |
+
def create_visualization(
|
| 1499 |
+
data=get_filtered_data(), min_val=min_age.value, max_val=max_age.value
|
| 1500 |
+
):
|
| 1501 |
+
if len(data) == 0:
|
| 1502 |
+
return mo.ui.text("No data available for the selected age range.")
|
| 1503 |
+
|
| 1504 |
+
# Create visualizations for filtered data
|
| 1505 |
+
fig1 = plotly_express.bar(
|
| 1506 |
+
data,
|
| 1507 |
+
x="name",
|
| 1508 |
+
y="account_balance",
|
| 1509 |
+
title=f"Account Balance by User (Age {min_val} - {max_val})",
|
| 1510 |
+
labels={"account_balance": "Account Balance ($)", "name": "User"},
|
| 1511 |
+
color="account_balance",
|
| 1512 |
+
color_continuous_scale=plotly_express.colors.sequential.Plasma,
|
| 1513 |
+
text_auto=".2s",
|
| 1514 |
+
)
|
| 1515 |
+
fig1.update_layout(
|
| 1516 |
+
height=400,
|
| 1517 |
+
xaxis_tickangle=-45,
|
| 1518 |
+
margin=dict(t=50, b=70, l=50, r=30),
|
| 1519 |
+
)
|
| 1520 |
+
fig1.update_traces(
|
| 1521 |
+
textposition="outside",
|
| 1522 |
+
)
|
| 1523 |
+
|
| 1524 |
+
fig2 = plotly_express.histogram(
|
| 1525 |
+
data,
|
| 1526 |
+
x="age",
|
| 1527 |
+
nbins=min(10, len(set(data["age"]))),
|
| 1528 |
+
title=f"Age Distribution (Age {min_val} - {max_val})",
|
| 1529 |
+
color_discrete_sequence=["#4C78A8"],
|
| 1530 |
+
opacity=0.8,
|
| 1531 |
+
histnorm="probability density",
|
| 1532 |
+
)
|
| 1533 |
+
fig2.update_layout(
|
| 1534 |
+
height=400,
|
| 1535 |
+
margin=dict(t=50, b=70, l=50, r=30),
|
| 1536 |
+
bargap=0.1,
|
| 1537 |
+
)
|
| 1538 |
+
|
| 1539 |
+
fig3 = plotly_express.scatter(
|
| 1540 |
+
data,
|
| 1541 |
+
x="age",
|
| 1542 |
+
y="account_balance",
|
| 1543 |
+
title=f"Age vs. Account Balance (Age {min_val} - {max_val})",
|
| 1544 |
+
labels={"account_balance": "Account Balance ($)", "age": "Age"},
|
| 1545 |
+
color="age",
|
| 1546 |
+
color_continuous_scale="Viridis",
|
| 1547 |
+
size_max=25,
|
| 1548 |
+
size="account_balance",
|
| 1549 |
+
hover_name="name",
|
| 1550 |
+
)
|
| 1551 |
+
fig3.update_layout(
|
| 1552 |
+
height=400,
|
| 1553 |
+
margin=dict(t=50, b=70, l=50, r=30),
|
| 1554 |
+
)
|
| 1555 |
+
|
| 1556 |
+
return mo.ui.tabs(
|
| 1557 |
+
{
|
| 1558 |
+
"Account Balance by User": mo.ui.plotly(fig1),
|
| 1559 |
+
"Age Distribution": mo.ui.plotly(fig2),
|
| 1560 |
+
"Age vs. Account Balance": mo.ui.plotly(fig3),
|
| 1561 |
+
}
|
| 1562 |
+
)
|
| 1563 |
+
return (create_visualization,)
|
| 1564 |
+
|
| 1565 |
+
|
| 1566 |
@app.cell
|
| 1567 |
+
def _(
|
| 1568 |
+
create_visualization,
|
| 1569 |
+
get_filtered_data,
|
| 1570 |
+
max_age,
|
| 1571 |
+
metrics_display,
|
| 1572 |
+
min_age,
|
| 1573 |
+
mo,
|
| 1574 |
+
):
|
| 1575 |
+
def dashboard(
|
| 1576 |
+
min_val=min_age.value,
|
| 1577 |
+
max_val=max_age.value,
|
| 1578 |
+
metrics=metrics_display(),
|
| 1579 |
+
data=get_filtered_data(),
|
| 1580 |
+
visualization=create_visualization()
|
| 1581 |
+
):
|
| 1582 |
+
return mo.vstack(
|
| 1583 |
+
[
|
| 1584 |
+
mo.md(f"### Interactive Dashboard (Age {min_val} - {max_val})"),
|
| 1585 |
+
metrics,
|
| 1586 |
+
mo.md("### Data Table"),
|
| 1587 |
+
mo.ui.table(data, page_size=5),
|
| 1588 |
+
mo.md("### Visualizations"),
|
| 1589 |
+
visualization,
|
| 1590 |
+
],
|
| 1591 |
+
gap=2
|
| 1592 |
+
)
|
| 1593 |
+
dashboard()
|
| 1594 |
+
return
|
| 1595 |
+
|
| 1596 |
+
|
| 1597 |
+
@app.cell(hide_code=True)
|
| 1598 |
+
def _conclusion(mo):
|
| 1599 |
+
mo.md(
|
| 1600 |
+
rf"""
|
| 1601 |
+
# Summary and Key Takeaways
|
| 1602 |
+
|
| 1603 |
+
In this notebook, we've explored DuckDB, a powerful embedded analytical database system. Here's what we covered:
|
| 1604 |
+
|
| 1605 |
+
1. **Connection types**: We learned the difference between in-memory databases (temporary) and file-based databases (persistent).
|
| 1606 |
+
|
| 1607 |
+
2. **Table creation**: We created tables with various data types, constraints, and primary keys.
|
| 1608 |
+
|
| 1609 |
+
3. **Data insertion**: We demonstrated different ways to insert data, including single inserts and bulk loading.
|
| 1610 |
+
|
| 1611 |
+
4. **SQL queries**: We executed various SQL queries directly and through Marimo's UI components.
|
| 1612 |
+
|
| 1613 |
+
5. **Integration with Polars**: We showed how DuckDB can work seamlessly with Polars DataFrames.
|
| 1614 |
+
|
| 1615 |
+
6. **Joins and relationships**: We performed JOIN operations between tables to combine related data.
|
| 1616 |
+
|
| 1617 |
+
7. **Aggregation**: We used aggregate functions to summarize and analyze data.
|
| 1618 |
+
|
| 1619 |
+
8. **Data conversion**: We converted DuckDB results to both Polars and Pandas DataFrames.
|
| 1620 |
+
|
| 1621 |
+
9. **Best practices**: We reviewed best practices for managing DuckDB connections and transactions.
|
| 1622 |
+
|
| 1623 |
+
10. **Visualization**: We created interactive visualizations and dashboards with Plotly and Marimo.
|
| 1624 |
+
|
| 1625 |
+
DuckDB is an excellent tool for data analysis, especially for analytical workloads. Its in-process nature makes it fast and easy to use, while its SQL compatibility makes it accessible for anyone familiar with SQL databases.
|
| 1626 |
+
|
| 1627 |
+
### Next Steps
|
| 1628 |
+
|
| 1629 |
+
- Try loading larger datasets into DuckDB
|
| 1630 |
+
- Experiment with more complex queries and window functions
|
| 1631 |
+
- Use DuckDB's COPY functionality to import/export data from/to files
|
| 1632 |
+
- Create more advanced interactive dashboards with Marimo and Plotly
|
| 1633 |
+
"""
|
| 1634 |
+
)
|
| 1635 |
+
return
|
| 1636 |
|
| 1637 |
|
| 1638 |
@app.cell(hide_code=True)
|
|
|
|
| 1640 |
import marimo as mo
|
| 1641 |
import duckdb
|
| 1642 |
import polars as pl
|
| 1643 |
+
import os
|
| 1644 |
+
from datetime import date
|
| 1645 |
+
import plotly.express as plotly_express
|
| 1646 |
+
import plotly.graph_objects as plotly_graph_objects
|
| 1647 |
+
import numpy as np
|
| 1648 |
+
return date, duckdb, mo, os, pl, plotly_express
|
| 1649 |
|
| 1650 |
|
| 1651 |
if __name__ == "__main__":
|