Spaces:
Running
Running
# /// script | |
# dependencies = [ | |
# "marimo", | |
# "polars==1.28.1", | |
# "requests==2.32.3", | |
# ] | |
# [tool.marimo.runtime] | |
# auto_instantiate = false | |
# /// | |
import marimo | |
__generated_with = "0.13.2" | |
app = marimo.App(width="medium") | |
def _(): | |
import marimo as mo | |
import polars as pl | |
import requests | |
import json | |
return mo, pl, requests | |
def _(requests): | |
json_data = requests.get( | |
"https://raw.githubusercontent.com/jesshart/fake-datasets/refs/heads/main/orders.json" | |
) | |
return (json_data,) | |
def _(mo): | |
mo.md( | |
r""" | |
# Loading Data | |
Let's start by loading our data and getting into the `.lazy()` format so our transformations and queries are speedy. | |
Read more about `.lazy()` here: https://docs.pola.rs/user-guide/lazy/ | |
""" | |
) | |
return | |
def _(json_data, pl): | |
demand: pl.LazyFrame = pl.read_json(json_data.content).lazy() | |
demand | |
return (demand,) | |
def _(mo): | |
mo.md( | |
r""" | |
Above, you will notice that when you reference the object as a standalone, you get out-of-the-box convenince from `marimo`. You have the `Table` and `Query Plan` options to choose from. | |
- 💡 Try out the `Table` view! You can click the `Preview data` button to get a quick view of your data. | |
- 💡 Take a look at the `Query plan`. Learn more about Polar's query plan here: https://docs.pola.rs/user-guide/lazy/query-plan/ | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
# marimo's Native Dataframe UI | |
There are a few ways to leverage marimo's native dataframe UI. One is by doing what we saw above—by referencing a `pl.LazyFrame` directly. You can also try, | |
- Reference a `pl.LazyFrame` (we already did this!) | |
- Referencing a `pl.DataFrame` and see how it different from its corresponding lazy version | |
- Use `mo.ui.table` | |
- Use `mo.ui.dataframe` | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Reference a pl.DataFrame | |
Let's reference the same frame as before, but this time as a `pl.DataFrame` by calling `.collect()` on it. | |
""" | |
) | |
return | |
def _(demand): | |
demand.collect() | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
Note how much functionality we have right out-of-the-box. Click on column names to see rich features like sorting, freezing, filtering, searching, and more! | |
Notice how `order_quantity` has a green bar chart under it indicating the ditribution of values for the field! | |
Don't miss the `Download` feature as well which supports downloading in CSV, json, or parquet format! | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Use `mo.ui.table` | |
The `mo.ui.table` allows you to select rows for use downstream. You can select the rows you want, and then use these as filtered rows downstream. | |
""" | |
) | |
return | |
def _(demand, mo): | |
demand_table = mo.ui.table(demand, label="Demand Table") | |
return (demand_table,) | |
def _(demand_table): | |
demand_table | |
return | |
def _(mo): | |
mo.md(r"""I like to use this feature to select groupings based on summary statistics so I can quickly explore subsets of categories. Let me show you what I mean.""") | |
return | |
def _(demand, pl): | |
summary: pl.LazyFrame = demand.group_by("product_family").agg( | |
pl.mean("order_quantity").alias("mean"), | |
pl.sum("order_quantity").alias("sum"), | |
pl.std("order_quantity").alias("std"), | |
pl.min("order_quantity").alias("min"), | |
pl.max("order_quantity").alias("max"), | |
pl.col("order_quantity").null_count().alias("null_count"), | |
) | |
return (summary,) | |
def _(mo, summary): | |
summary_table = mo.ui.table(summary) | |
return (summary_table,) | |
def _(summary_table): | |
summary_table | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
Now, instead of manually creatinga filter for what I want to take a closer look at, I simply select from the ui and do a simple join to get that aggregated level with more detail. | |
The following cell uses the output of the `mo.ui.table` selection, selects its unique keys, and uses that to join for the selected subset of the original table. | |
""" | |
) | |
return | |
def _(demand, pl, summary_table): | |
selection_keys: pl.LazyFrame = ( | |
summary_table.value.lazy().select("product_family").unique() | |
) | |
selection: pl.lazyframe = selection_keys.join( | |
demand, on="product_family", how="left" | |
) | |
selection.collect() | |
return | |
def _(mo): | |
mo.md(r"""## Use `mo.ui.dataframe`""") | |
return | |
def _(demand, mo): | |
mo_dateframe = mo.ui.dataframe(demand.collect()) | |
return (mo_dateframe,) | |
def _(mo_dateframe): | |
mo_dateframe | |
return | |
def _(): | |
return | |
if __name__ == "__main__": | |
app.run() | |