Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -29,7 +29,11 @@ def make_arena_leaderboard_md(arena_df):
|
|
29 |
total_models = len(arena_df)
|
30 |
space = " "
|
31 |
leaderboard_md = f"""
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
"""
|
35 |
return leaderboard_md
|
@@ -45,14 +49,6 @@ def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"
|
|
45 |
"""
|
46 |
return leaderboard_md
|
47 |
|
48 |
-
def make_full_leaderboard_md(elo_results):
|
49 |
-
leaderboard_md = f"""
|
50 |
-
Three benchmarks are displayed: **Test Task 1**, **Test Task 2**, **Test Task 3**.
|
51 |
-
|
52 |
-
Higher values are better for all benchmarks.
|
53 |
-
"""
|
54 |
-
return leaderboard_md
|
55 |
-
|
56 |
|
57 |
def make_leaderboard_md_live(elo_results):
|
58 |
leaderboard_md = f"""
|
@@ -96,25 +92,11 @@ def update_elo_components(max_num_files, elo_results_file):
|
|
96 |
basic_component_values[5] = md4
|
97 |
|
98 |
|
99 |
-
def update_worker(max_num_files, interval, elo_results_file):
|
100 |
-
while True:
|
101 |
-
tic = time.time()
|
102 |
-
update_elo_components(max_num_files, elo_results_file)
|
103 |
-
durtaion = time.time() - tic
|
104 |
-
print(f"update duration: {durtaion:.2f} s")
|
105 |
-
time.sleep(max(interval - durtaion, 0))
|
106 |
-
|
107 |
-
|
108 |
-
def load_demo(url_params, request: gr.Request):
|
109 |
-
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
|
110 |
-
return basic_component_values + leader_component_values
|
111 |
-
|
112 |
-
|
113 |
def model_hyperlink(model_name, link):
|
114 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
115 |
|
116 |
|
117 |
-
def load_leaderboard_table_csv(filename, add_hyperlink=
|
118 |
lines = open(filename).readlines()
|
119 |
heads = [v.strip() for v in lines[0].split(",")]
|
120 |
rows = []
|
@@ -180,9 +162,7 @@ def get_full_table(model_table_df):
|
|
180 |
row.append(model_name)
|
181 |
row.append(np.nan)
|
182 |
row.append(np.nan)
|
183 |
-
row.append(np.nan)
|
184 |
-
# row.append(model_table_df.iloc[i]["MT-bench (score)"])
|
185 |
-
# row.append(model_table_df.iloc[i]["MMLU"])
|
186 |
# Organization
|
187 |
row.append(model_table_df.iloc[i]["Organization"])
|
188 |
# license
|
@@ -192,86 +172,6 @@ def get_full_table(model_table_df):
|
|
192 |
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
|
193 |
return values
|
194 |
|
195 |
-
def create_ranking_str(ranking, ranking_difference):
|
196 |
-
if ranking_difference > 0:
|
197 |
-
# return f"{int(ranking)} (\u2191{int(ranking_difference)})"
|
198 |
-
return f"{int(ranking)} \u2191"
|
199 |
-
elif ranking_difference < 0:
|
200 |
-
# return f"{int(ranking)} (\u2193{int(-ranking_difference)})"
|
201 |
-
return f"{int(ranking)} \u2193"
|
202 |
-
else:
|
203 |
-
return f"{int(ranking)}"
|
204 |
-
|
205 |
-
def recompute_final_ranking(arena_df):
|
206 |
-
# compute ranking based on CI
|
207 |
-
ranking = {}
|
208 |
-
for i, model_a in enumerate(arena_df.index):
|
209 |
-
ranking[model_a] = 1
|
210 |
-
for j, model_b in enumerate(arena_df.index):
|
211 |
-
if i == j:
|
212 |
-
continue
|
213 |
-
if arena_df.loc[model_b]["rating_q025"] > arena_df.loc[model_a]["rating_q975"]:
|
214 |
-
ranking[model_a] += 1
|
215 |
-
return list(ranking.values())
|
216 |
-
|
217 |
-
def get_arena_table(arena_df, model_table_df, arena_subset_df=None):
|
218 |
-
arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
|
219 |
-
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
|
220 |
-
arena_df = arena_df.sort_values(by=["final_ranking"], ascending=True)
|
221 |
-
|
222 |
-
# arena_df["final_ranking"] = range(1, len(arena_df) + 1)
|
223 |
-
# sort by rating
|
224 |
-
if arena_subset_df is not None:
|
225 |
-
# filter out models not in the arena_df
|
226 |
-
arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)]
|
227 |
-
arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False)
|
228 |
-
# arena_subset_df = arena_subset_df.sort_values(by=["final_ranking"], ascending=True)
|
229 |
-
arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df)
|
230 |
-
# keep only the models in the subset in arena_df and recompute final_ranking
|
231 |
-
arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)]
|
232 |
-
# recompute final ranking
|
233 |
-
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
|
234 |
-
|
235 |
-
# assign ranking by the order
|
236 |
-
arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1)
|
237 |
-
arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1)
|
238 |
-
# join arena_df and arena_subset_df on index
|
239 |
-
arena_df = arena_subset_df.join(arena_df["final_ranking"], rsuffix="_global", how="inner")
|
240 |
-
arena_df["ranking_difference"] = arena_df["final_ranking_global"] - arena_df["final_ranking"]
|
241 |
-
|
242 |
-
arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
|
243 |
-
arena_df["final_ranking"] = arena_df.apply(lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]), axis=1)
|
244 |
-
|
245 |
-
values = []
|
246 |
-
for i in range(len(arena_df)):
|
247 |
-
row = []
|
248 |
-
model_key = arena_df.index[i]
|
249 |
-
try: # this is a janky fix for where the model key is not in the model table (model table and arena table dont contain all the same models)
|
250 |
-
model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
|
251 |
-
0
|
252 |
-
]
|
253 |
-
# rank
|
254 |
-
ranking = arena_df.iloc[i].get("final_ranking") or i+1
|
255 |
-
row.append(ranking)
|
256 |
-
if arena_subset_df is not None:
|
257 |
-
row.append(arena_df.iloc[i].get("ranking_difference") or 0)
|
258 |
-
# model display name
|
259 |
-
row.append(model_name)
|
260 |
-
# elo rating
|
261 |
-
row.append(round(arena_df.iloc[i]["rating"]))
|
262 |
-
# Organization
|
263 |
-
row.append(
|
264 |
-
model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
|
265 |
-
)
|
266 |
-
# license
|
267 |
-
row.append(
|
268 |
-
model_table_df[model_table_df["key"] == model_key]["License"].values[0]
|
269 |
-
)
|
270 |
-
values.append(row)
|
271 |
-
except Exception as e:
|
272 |
-
print(f"{model_key} - {e}")
|
273 |
-
return values
|
274 |
-
|
275 |
key_to_category_name = {
|
276 |
"full": "Overall",
|
277 |
}
|
@@ -304,9 +204,8 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
|
|
304 |
model_table_df = pd.DataFrame(data)
|
305 |
|
306 |
with gr.Tabs() as tabs:
|
307 |
-
# arena table
|
308 |
arena_table_vals = get_full_table(model_table_df)
|
309 |
-
with gr.Tab("
|
310 |
md = make_arena_leaderboard_md(arena_df)
|
311 |
leaderboard_markdown = gr.Markdown(md, elem_id="leaderboard_markdown")
|
312 |
with gr.Row():
|
@@ -350,40 +249,6 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
|
|
350 |
|
351 |
leader_component_values[:] = [default_md]
|
352 |
|
353 |
-
# with gr.Tab("Full Leaderboard", id=0):
|
354 |
-
# md = make_full_leaderboard_md(elo_results)
|
355 |
-
# gr.Markdown(md, elem_id="leaderboard_markdown")
|
356 |
-
# with gr.Row():
|
357 |
-
# with gr.Column(scale=2):
|
358 |
-
# category_dropdown = gr.Dropdown(choices=list(arena_dfs.keys()), label="Category", value="Overall")
|
359 |
-
# default_category_details = make_category_arena_leaderboard_md(arena_df, arena_df, name="Overall")
|
360 |
-
# with gr.Column(scale=4, variant="panel"):
|
361 |
-
# category_deets = gr.Markdown(default_category_details, elem_id="category_deets")
|
362 |
-
|
363 |
-
# full_table_vals = get_full_table(model_table_df)
|
364 |
-
# display_df = gr.Dataframe(
|
365 |
-
# headers=[
|
366 |
-
# "π€ Model",
|
367 |
-
# "β Task 1",
|
368 |
-
# "π Task 2",
|
369 |
-
# "π Task 3",
|
370 |
-
# "Organization",
|
371 |
-
# "License",
|
372 |
-
# ],
|
373 |
-
# datatype=["markdown", "number", "number", "number", "str", "str"],
|
374 |
-
# value=full_table_vals,
|
375 |
-
# elem_id="full_leaderboard_dataframe",
|
376 |
-
# column_widths=[200, 100, 100, 100, 150, 150],
|
377 |
-
# height=700,
|
378 |
-
# wrap=True,
|
379 |
-
# )
|
380 |
-
# gr.Markdown(
|
381 |
-
# f"""Note: .
|
382 |
-
# """,
|
383 |
-
# elem_id="leaderboard_markdown"
|
384 |
-
# )
|
385 |
-
|
386 |
-
# leader_component_values[:] = [default_md]
|
387 |
if not show_plot:
|
388 |
gr.Markdown(
|
389 |
""" ## Submit your model [here]().
|
@@ -394,7 +259,7 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
|
|
394 |
pass
|
395 |
|
396 |
def update_leaderboard_df(arena_table_vals):
|
397 |
-
elo_datarame = pd.DataFrame(arena_table_vals, columns=[
|
398 |
|
399 |
# goal: color the rows based on the rank with styler
|
400 |
def highlight_max(s):
|
@@ -414,51 +279,31 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
|
|
414 |
arena_values = get_arena_table(arena_df, model_table_df, arena_subset_df = arena_subset_df if category != "Overall" else None)
|
415 |
if category != "Overall":
|
416 |
arena_values = update_leaderboard_df(arena_values)
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
"π€ Model",
|
443 |
-
"β Arena Elo",
|
444 |
-
"Organization",
|
445 |
-
"License",
|
446 |
-
],
|
447 |
-
datatype=[
|
448 |
-
"number",
|
449 |
-
"markdown",
|
450 |
-
"number",
|
451 |
-
"str",
|
452 |
-
"str",
|
453 |
-
],
|
454 |
-
value=arena_values,
|
455 |
-
elem_id="arena_leaderboard_dataframe",
|
456 |
-
height=700,
|
457 |
-
column_widths=[70, 190, 110, 160, 150, 140],
|
458 |
-
wrap=True,
|
459 |
-
)
|
460 |
-
|
461 |
-
|
462 |
leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category)
|
463 |
return arena_values, leaderboard_md
|
464 |
|
|
|
29 |
total_models = len(arena_df)
|
30 |
space = " "
|
31 |
leaderboard_md = f"""
|
32 |
+
Three benchmarks are displayed: **Test Task 1**, **Test Task 2**, **Test Task 3**.
|
33 |
+
|
34 |
+
Higher values are better for all benchmarks.
|
35 |
+
|
36 |
+
Total #models: **{total_models}**.{space} Last updated: June 1, 2024.
|
37 |
|
38 |
"""
|
39 |
return leaderboard_md
|
|
|
49 |
"""
|
50 |
return leaderboard_md
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
def make_leaderboard_md_live(elo_results):
|
54 |
leaderboard_md = f"""
|
|
|
92 |
basic_component_values[5] = md4
|
93 |
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
def model_hyperlink(model_name, link):
|
96 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
97 |
|
98 |
|
99 |
+
def load_leaderboard_table_csv(filename, add_hyperlink=False):
|
100 |
lines = open(filename).readlines()
|
101 |
heads = [v.strip() for v in lines[0].split(",")]
|
102 |
rows = []
|
|
|
162 |
row.append(model_name)
|
163 |
row.append(np.nan)
|
164 |
row.append(np.nan)
|
165 |
+
row.append(np.nan)\
|
|
|
|
|
166 |
# Organization
|
167 |
row.append(model_table_df.iloc[i]["Organization"])
|
168 |
# license
|
|
|
172 |
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
|
173 |
return values
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
key_to_category_name = {
|
176 |
"full": "Overall",
|
177 |
}
|
|
|
204 |
model_table_df = pd.DataFrame(data)
|
205 |
|
206 |
with gr.Tabs() as tabs:
|
|
|
207 |
arena_table_vals = get_full_table(model_table_df)
|
208 |
+
with gr.Tab("Full leaderboard", id=0):
|
209 |
md = make_arena_leaderboard_md(arena_df)
|
210 |
leaderboard_markdown = gr.Markdown(md, elem_id="leaderboard_markdown")
|
211 |
with gr.Row():
|
|
|
249 |
|
250 |
leader_component_values[:] = [default_md]
|
251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
if not show_plot:
|
253 |
gr.Markdown(
|
254 |
""" ## Submit your model [here]().
|
|
|
259 |
pass
|
260 |
|
261 |
def update_leaderboard_df(arena_table_vals):
|
262 |
+
elo_datarame = pd.DataFrame(arena_table_vals, columns=["Rank", "π€ Model", "β Task 1", "π Task 2", "π Task 3", "Organization", "License"])
|
263 |
|
264 |
# goal: color the rows based on the rank with styler
|
265 |
def highlight_max(s):
|
|
|
279 |
arena_values = get_arena_table(arena_df, model_table_df, arena_subset_df = arena_subset_df if category != "Overall" else None)
|
280 |
if category != "Overall":
|
281 |
arena_values = update_leaderboard_df(arena_values)
|
282 |
+
arena_values = gr.Dataframe(
|
283 |
+
headers=[
|
284 |
+
"Rank",
|
285 |
+
"π€ Model",
|
286 |
+
"β Task 1",
|
287 |
+
"π Task 2",
|
288 |
+
"π Task 3",
|
289 |
+
"Organization",
|
290 |
+
"License",
|
291 |
+
],
|
292 |
+
datatype=[
|
293 |
+
"number",
|
294 |
+
"markdown",
|
295 |
+
"number",
|
296 |
+
"number",
|
297 |
+
"number",
|
298 |
+
"str",
|
299 |
+
"str",
|
300 |
+
],
|
301 |
+
value=arena_values,
|
302 |
+
elem_id="arena_leaderboard_dataframe",
|
303 |
+
height=700,
|
304 |
+
column_widths=[70, 190, 110, 110, 110, 150, 140],
|
305 |
+
wrap=True,
|
306 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category)
|
308 |
return arena_values, leaderboard_md
|
309 |
|