Spaces:
Running
Running
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space.""" | |
import ast | |
import argparse | |
import glob | |
import pickle | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
basic_component_values = [None] * 6 | |
leader_component_values = [None] | |
def make_default_md(arena_df, elo_results): | |
total_votes = sum(arena_df["num_battles"]) // 2 | |
total_models = len(arena_df) | |
leaderboard_md = f""" | |
# NeurIPS LLM Merging Competition Leaderboard | |
[Website](https://llm-merging.github.io/index) | [Starter Kit (Github)](https://github.com/llm-merging/LLM-Merging) | [Discord](https://discord.com/invite/dPBHEVnV) | | |
""" | |
return leaderboard_md | |
def make_arena_leaderboard_md(arena_df): | |
total_votes = sum(arena_df["num_battles"]) // 2 | |
total_models = len(arena_df) | |
space = " " | |
leaderboard_md = f""" | |
Total #models: **{total_models}**.{space} Total #votes: **{"{:,}".format(total_votes)}**.{space} Last updated: June 1, 2024. | |
""" | |
return leaderboard_md | |
def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"): | |
total_votes = sum(arena_df["num_battles"]) // 2 | |
total_models = len(arena_df) | |
space = " " | |
total_subset_votes = sum(arena_subset_df["num_battles"]) // 2 | |
total_subset_models = len(arena_subset_df) | |
leaderboard_md = f"""### {cat_name_to_explanation[name]} | |
#### [Coverage] {space} #models: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes/total_votes * 100)}%)**{space} | |
""" | |
return leaderboard_md | |
def make_full_leaderboard_md(elo_results): | |
leaderboard_md = f""" | |
Three benchmarks are displayed: **Test Task 1**, **Test Task 2**, **Test Task 3**. | |
Higher values are better for all benchmarks. | |
""" | |
return leaderboard_md | |
def make_leaderboard_md_live(elo_results): | |
leaderboard_md = f""" | |
# Leaderboard | |
Last updated: {elo_results["last_updated_datetime"]} | |
{elo_results["leaderboard_table"]} | |
""" | |
return leaderboard_md | |
def update_elo_components(max_num_files, elo_results_file): | |
log_files = get_log_files(max_num_files) | |
# Leaderboard | |
if elo_results_file is None: # Do live update | |
battles = clean_battle_data(log_files) | |
elo_results = report_elo_analysis_results(battles) | |
leader_component_values[0] = make_leaderboard_md_live(elo_results) | |
# Basic stats | |
basic_stats = report_basic_stats(log_files) | |
md0 = f"Last updated: {basic_stats['last_updated_datetime']}" | |
md1 = "### Action Histogram\n" | |
md1 += basic_stats["action_hist_md"] + "\n" | |
md2 = "### Anony. Vote Histogram\n" | |
md2 += basic_stats["anony_vote_hist_md"] + "\n" | |
md3 = "### Model Call Histogram\n" | |
md3 += basic_stats["model_hist_md"] + "\n" | |
md4 = "### Model Call (Last 24 Hours)\n" | |
md4 += basic_stats["num_chats_last_24_hours"] + "\n" | |
basic_component_values[0] = md0 | |
basic_component_values[1] = basic_stats["chat_dates_bar"] | |
basic_component_values[2] = md1 | |
basic_component_values[3] = md2 | |
basic_component_values[4] = md3 | |
basic_component_values[5] = md4 | |
def update_worker(max_num_files, interval, elo_results_file): | |
while True: | |
tic = time.time() | |
update_elo_components(max_num_files, elo_results_file) | |
durtaion = time.time() - tic | |
print(f"update duration: {durtaion:.2f} s") | |
time.sleep(max(interval - durtaion, 0)) | |
def load_demo(url_params, request: gr.Request): | |
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") | |
return basic_component_values + leader_component_values | |
def model_hyperlink(model_name, link): | |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
def load_leaderboard_table_csv(filename, add_hyperlink=True): | |
lines = open(filename).readlines() | |
heads = [v.strip() for v in lines[0].split(",")] | |
rows = [] | |
for i in range(1, len(lines)): | |
row = [v.strip() for v in lines[i].split(",")] | |
for j in range(len(heads)): | |
item = {} | |
for h, v in zip(heads, row): | |
if h == "Arena Elo rating": | |
if v != "-": | |
v = int(ast.literal_eval(v)) | |
else: | |
v = np.nan | |
elif h == "MMLU": | |
if v != "-": | |
v = round(ast.literal_eval(v) * 100, 1) | |
else: | |
v = np.nan | |
elif h == "MT-bench (win rate %)": | |
if v != "-": | |
v = round(ast.literal_eval(v[:-1]), 1) | |
else: | |
v = np.nan | |
elif h == "MT-bench (score)": | |
if v != "-": | |
v = round(ast.literal_eval(v), 2) | |
else: | |
v = np.nan | |
item[h] = v | |
if add_hyperlink: | |
item["Model"] = model_hyperlink(item["Model"], item["Link"]) | |
rows.append(item) | |
return rows | |
def build_basic_stats_tab(): | |
empty = "Loading ..." | |
basic_component_values[:] = [empty, None, empty, empty, empty, empty] | |
md0 = gr.Markdown(empty) | |
gr.Markdown("#### Figure 1: Number of model calls and votes") | |
plot_1 = gr.Plot(show_label=False) | |
with gr.Row(): | |
with gr.Column(): | |
md1 = gr.Markdown(empty) | |
with gr.Column(): | |
md2 = gr.Markdown(empty) | |
with gr.Row(): | |
with gr.Column(): | |
md3 = gr.Markdown(empty) | |
with gr.Column(): | |
md4 = gr.Markdown(empty) | |
return [md0, plot_1, md1, md2, md3, md4] | |
def get_full_table(model_table_df): | |
values = [] | |
for i in range(len(model_table_df)): | |
row = [] | |
model_key = model_table_df.iloc[i]["key"] | |
model_name = model_table_df.iloc[i]["Model"] | |
# model display name | |
row.append(model_name) | |
row.append(np.nan) | |
row.append(model_table_df.iloc[i]["MT-bench (score)"]) | |
row.append(model_table_df.iloc[i]["MMLU"]) | |
# Organization | |
row.append(model_table_df.iloc[i]["Organization"]) | |
# license | |
row.append(model_table_df.iloc[i]["License"]) | |
values.append(row) | |
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9) | |
return values | |
def create_ranking_str(ranking, ranking_difference): | |
if ranking_difference > 0: | |
# return f"{int(ranking)} (\u2191{int(ranking_difference)})" | |
return f"{int(ranking)} \u2191" | |
elif ranking_difference < 0: | |
# return f"{int(ranking)} (\u2193{int(-ranking_difference)})" | |
return f"{int(ranking)} \u2193" | |
else: | |
return f"{int(ranking)}" | |
def recompute_final_ranking(arena_df): | |
# compute ranking based on CI | |
ranking = {} | |
for i, model_a in enumerate(arena_df.index): | |
ranking[model_a] = 1 | |
for j, model_b in enumerate(arena_df.index): | |
if i == j: | |
continue | |
if arena_df.loc[model_b]["rating_q025"] > arena_df.loc[model_a]["rating_q975"]: | |
ranking[model_a] += 1 | |
return list(ranking.values()) | |
def get_arena_table(arena_df, model_table_df, arena_subset_df=None): | |
arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False]) | |
arena_df["final_ranking"] = recompute_final_ranking(arena_df) | |
arena_df = arena_df.sort_values(by=["final_ranking"], ascending=True) | |
# arena_df["final_ranking"] = range(1, len(arena_df) + 1) | |
# sort by rating | |
if arena_subset_df is not None: | |
# filter out models not in the arena_df | |
arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)] | |
arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False) | |
# arena_subset_df = arena_subset_df.sort_values(by=["final_ranking"], ascending=True) | |
arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df) | |
# keep only the models in the subset in arena_df and recompute final_ranking | |
arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)] | |
# recompute final ranking | |
arena_df["final_ranking"] = recompute_final_ranking(arena_df) | |
# assign ranking by the order | |
arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1) | |
arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1) | |
# join arena_df and arena_subset_df on index | |
arena_df = arena_subset_df.join(arena_df["final_ranking"], rsuffix="_global", how="inner") | |
arena_df["ranking_difference"] = arena_df["final_ranking_global"] - arena_df["final_ranking"] | |
arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False]) | |
arena_df["final_ranking"] = arena_df.apply(lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]), axis=1) | |
values = [] | |
for i in range(len(arena_df)): | |
row = [] | |
model_key = arena_df.index[i] | |
try: # this is a janky fix for where the model key is not in the model table (model table and arena table dont contain all the same models) | |
model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[ | |
0 | |
] | |
# rank | |
ranking = arena_df.iloc[i].get("final_ranking") or i+1 | |
row.append(ranking) | |
if arena_subset_df is not None: | |
row.append(arena_df.iloc[i].get("ranking_difference") or 0) | |
# model display name | |
row.append(model_name) | |
# elo rating | |
row.append(round(arena_df.iloc[i]["rating"])) | |
# Organization | |
row.append( | |
model_table_df[model_table_df["key"] == model_key]["Organization"].values[0] | |
) | |
# license | |
row.append( | |
model_table_df[model_table_df["key"] == model_key]["License"].values[0] | |
) | |
values.append(row) | |
except Exception as e: | |
print(f"{model_key} - {e}") | |
return values | |
key_to_category_name = { | |
"full": "Overall", | |
} | |
cat_name_to_explanation = { | |
"Overall": "Overall Questions", | |
} | |
def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False): | |
arena_dfs = {} | |
category_elo_results = {} | |
if results_file is None: # Do live update | |
default_md = "Loading ..." | |
else: | |
with open(elo_results_file, "rb") as fin: | |
elo_results = pickle.load(fin) | |
if "full" in elo_results: | |
print("KEYS ", elo_results.keys()) | |
for k in elo_results.keys(): | |
if k not in key_to_category_name: | |
continue | |
arena_dfs[key_to_category_name[k]] = elo_results[k]["leaderboard_table_df"] | |
category_elo_results[key_to_category_name[k]] = elo_results[k] | |
arena_df = arena_dfs["Overall"] | |
default_md = make_default_md(arena_df, category_elo_results["Overall"]) | |
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown") | |
if leaderboard_table_file: | |
data = load_leaderboard_table_csv(leaderboard_table_file) | |
model_table_df = pd.DataFrame(data) | |
with gr.Tabs() as tabs: | |
# arena table | |
arena_table_vals = get_arena_table(arena_df, model_table_df) | |
with gr.Tab("Arena Elo", id=0): | |
md = make_arena_leaderboard_md(arena_df) | |
leaderboard_markdown = gr.Markdown(md, elem_id="leaderboard_markdown") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
category_dropdown = gr.Dropdown(choices=list(arena_dfs.keys()), label="Category", value="Overall") | |
default_category_details = make_category_arena_leaderboard_md(arena_df, arena_df, name="Overall") | |
with gr.Column(scale=4, variant="panel"): | |
category_deets = gr.Markdown(default_category_details, elem_id="category_deets") | |
elo_display_df = gr.Dataframe( | |
headers=[ | |
"Rank", | |
"🤖 Model", | |
"⭐ Arena Elo", | |
"Organization", | |
"License", | |
], | |
datatype=[ | |
"number", | |
"markdown", | |
"number", | |
"str", | |
"str", | |
], | |
value=arena_table_vals, | |
elem_id="arena_leaderboard_dataframe", | |
height=700, | |
column_widths=[70, 190, 110, 160, 150, 140], | |
wrap=True, | |
) | |
gr.Markdown( | |
f"""Note: . | |
""", | |
elem_id="leaderboard_markdown" | |
) | |
leader_component_values[:] = [default_md] | |
# with gr.Tab("Full Leaderboard", id=0): | |
# md = make_full_leaderboard_md(elo_results) | |
# gr.Markdown(md, elem_id="leaderboard_markdown") | |
# with gr.Row(): | |
# with gr.Column(scale=2): | |
# category_dropdown = gr.Dropdown(choices=list(arena_dfs.keys()), label="Category", value="Overall") | |
# default_category_details = make_category_arena_leaderboard_md(arena_df, arena_df, name="Overall") | |
# with gr.Column(scale=4, variant="panel"): | |
# category_deets = gr.Markdown(default_category_details, elem_id="category_deets") | |
# full_table_vals = get_full_table(model_table_df) | |
# display_df = gr.Dataframe( | |
# headers=[ | |
# "🤖 Model", | |
# "⭐ Task 1", | |
# "📈 Task 2", | |
# "📚 Task 3", | |
# "Organization", | |
# "License", | |
# ], | |
# datatype=["markdown", "number", "number", "number", "str", "str"], | |
# value=full_table_vals, | |
# elem_id="full_leaderboard_dataframe", | |
# column_widths=[200, 100, 100, 100, 150, 150], | |
# height=700, | |
# wrap=True, | |
# ) | |
# gr.Markdown( | |
# f"""Note: . | |
# """, | |
# elem_id="leaderboard_markdown" | |
# ) | |
# leader_component_values[:] = [default_md] | |
if not show_plot: | |
gr.Markdown( | |
""" ## Submit your model [here](). | |
""", | |
elem_id="leaderboard_markdown", | |
) | |
else: | |
pass | |
def update_leaderboard_df(arena_table_vals): | |
elo_datarame = pd.DataFrame(arena_table_vals, columns=[ "Rank", "🤖 Model", "⭐ Arena Elo", "Organization", "License"]) | |
# goal: color the rows based on the rank with styler | |
def highlight_max(s): | |
# all items in S which contain up arrow should be green, down arrow should be red, otherwise black | |
return ["color: green; font-weight: bold" if "\u2191" in v else "color: red; font-weight: bold" if "\u2193" in v else "" for v in s] | |
def highlight_rank_max(s): | |
return ["color: green; font-weight: bold" if v > 0 else "color: red; font-weight: bold" if v < 0 else "" for v in s] | |
return elo_datarame.style.apply(highlight_max, subset=["Rank"]) | |
def update_leaderboard_and_plots(category): | |
arena_subset_df = arena_dfs[category] | |
arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 500] | |
elo_subset_results = category_elo_results[category] | |
arena_df = arena_dfs["Overall"] | |
arena_values = get_arena_table(arena_df, model_table_df, arena_subset_df = arena_subset_df if category != "Overall" else None) | |
if category != "Overall": | |
arena_values = update_leaderboard_df(arena_values) | |
arena_values = gr.Dataframe( | |
headers=[ | |
"Rank", | |
"🤖 Model", | |
"⭐ Arena Elo", | |
"Organization", | |
"License", | |
], | |
datatype=[ | |
"number", | |
"markdown", | |
"number", | |
"str", | |
"str", | |
], | |
value=arena_values, | |
elem_id="arena_leaderboard_dataframe", | |
height=700, | |
column_widths=[60, 190, 110, 160, 150, 140], | |
wrap=True, | |
) | |
else: | |
arena_values = gr.Dataframe( | |
headers=[ | |
"Rank", | |
"🤖 Model", | |
"⭐ Arena Elo", | |
"Organization", | |
"License", | |
], | |
datatype=[ | |
"number", | |
"markdown", | |
"number", | |
"str", | |
"str", | |
], | |
value=arena_values, | |
elem_id="arena_leaderboard_dataframe", | |
height=700, | |
column_widths=[70, 190, 110, 160, 150, 140], | |
wrap=True, | |
) | |
leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category) | |
return arena_values, leaderboard_md | |
category_dropdown.change(update_leaderboard_and_plots, inputs=[category_dropdown], outputs=[display_df, category_deets]) | |
with gr.Accordion( | |
"📝 Citation", | |
open=True, | |
): | |
citation_md = """ | |
### Citation | |
Please cite the following paper | |
""" | |
gr.Markdown(citation_md, elem_id="leaderboard_markdown") | |
gr.Markdown(acknowledgment_md) | |
if show_plot: | |
return [md_1] | |
return [md_1] | |
block_css = """ | |
#notice_markdown { | |
font-size: 104% | |
} | |
#notice_markdown th { | |
display: none; | |
} | |
#notice_markdown td { | |
padding-top: 6px; | |
padding-bottom: 6px; | |
} | |
#category_deets { | |
text-align: center; | |
padding: 0px; | |
padding-left: 5px; | |
} | |
#leaderboard_markdown { | |
font-size: 104% | |
} | |
#leaderboard_markdown td { | |
padding-top: 6px; | |
padding-bottom: 6px; | |
} | |
#leaderboard_header_markdown { | |
font-size: 104%; | |
text-align: center; | |
display:block; | |
} | |
#leaderboard_dataframe td { | |
line-height: 0.1em; | |
} | |
#plot-title { | |
text-align: center; | |
display:block; | |
} | |
#non-interactive-button { | |
display: inline-block; | |
padding: 10px 10px; | |
background-color: #f7f7f7; /* Super light grey background */ | |
text-align: center; | |
font-size: 26px; /* Larger text */ | |
border-radius: 0; /* Straight edges, no border radius */ | |
border: 0px solid #dcdcdc; /* A light grey border to match the background */ | |
user-select: none; /* The text inside the button is not selectable */ | |
pointer-events: none; /* The button is non-interactive */ | |
} | |
footer { | |
display:none !important | |
} | |
.sponsor-image-about img { | |
margin: 0 20px; | |
margin-top: 20px; | |
height: 40px; | |
max-height: 100%; | |
width: auto; | |
float: left; | |
} | |
""" | |
acknowledgment_md = """ | |
### Acknowledgment | |
We thank []() for their generous [sponsorship](). | |
<div class="sponsor-image-about"> | |
</div> | |
""" | |
def build_demo(elo_results_file, leaderboard_table_file): | |
text_size = gr.themes.sizes.text_lg | |
theme = gr.themes.Base(text_size=text_size) | |
theme.set(button_secondary_background_fill_hover="*primary_300", | |
button_secondary_background_fill_hover_dark="*primary_700") | |
with gr.Blocks( | |
title="LLM Merging Leaderboard", | |
theme=theme, | |
# theme = gr.themes.Base.load("theme.json"), # uncomment to use new cool theme | |
css=block_css, | |
) as demo: | |
leader_components = build_leaderboard_tab( | |
elo_results_file, leaderboard_table_file, show_plot=True | |
) | |
return demo | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true") | |
parser.add_argument("--host", default="0.0.0.0") | |
parser.add_argument("--port", type=int, default=7860) | |
args = parser.parse_args() | |
elo_result_files = glob.glob("elo_results_*.pkl") | |
elo_result_files.sort(key=lambda x: int(x[12:-4])) | |
elo_result_file = elo_result_files[-1] | |
leaderboard_table_files = glob.glob("leaderboard_table_*.csv") | |
leaderboard_table_files.sort(key=lambda x: int(x[18:-4])) | |
leaderboard_table_file = leaderboard_table_files[-1] | |
demo = build_demo(elo_result_file, leaderboard_table_file) | |
demo.launch(share=args.share, server_name=args.host, server_port=args.port) |