Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer | |
import sentence_transformers | |
from sentence_transformers import SentenceTransformer, util | |
import pickle | |
from PIL import Image | |
import os | |
## Define model | |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") | |
#Open the precomputed embeddings | |
emb_filename = 'unsplash-25k-photos-embeddings.pkl' | |
with open(emb_filename, 'rb') as fIn: | |
img_names, img_emb = pickle.load(fIn) | |
#print(f'img_emb: {print(img_emb)}') | |
#print(f'img_names: {print(img_names)}') | |
def search_text(query, top_k=1): | |
"""" Search an image based on the text query. | |
Args: | |
query ([string]): [query you want search for] | |
top_k (int, optional): [Amount of images o return]. Defaults to 1. | |
Returns: | |
[list]: [list of images that are related to the query.] | |
""" | |
# First, we encode the query. | |
inputs = tokenizer([query], padding=True, return_tensors="pt") | |
query_emb = model.get_text_features(**inputs) | |
# Then, we use the util.semantic_search function, which computes the cosine-similarity | |
# between the query embedding and all image embeddings. | |
# It then returns the top_k highest ranked images, which we output | |
hits = util.semantic_search(query_emb, img_emb, top_k=top_k)[0] | |
image=[] | |
for hit in hits: | |
#print(img_names[hit['corpus_id']]) | |
object = Image.open(os.path.join("photos/", img_names[hit['corpus_id']])) | |
image.append(object) | |
#print(f'array length is: {len(image)}') | |
return image | |
iface = gr.Interface( | |
title = "Text to Image using CLIP Model 📸", | |
description = "Gradio Demo fo CLIP model. \n This demo is based on assessment for the 🤗 Huggingface course 2. \n To use it, simply write which image you are looking for. Read more at the links below.", | |
article = "You find more information about this demo on my ✨ github repository [marcelcastrobr](https://github.com/marcelcastrobr/huggingface_course2)", | |
fn=search_text, | |
inputs=[gr.Textbox(lines=4, | |
label="Write what you are looking for in an image...", | |
placeholder="Text Here..."), | |
gr.Slider(0, 5, step=1)], | |
outputs=[gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
).style(grid=[2], height="auto")] | |
,examples=[[("Dog in the beach"), 2], | |
[("Paris during night."), 1], | |
[("A cute kangaroo"), 5], | |
[("Dois cachorros"), 2], | |
[("un homme marchant sur le parc"), 3], | |
[("et høyt fjell"), 2]] | |
).launch(debug=True) |