Spaces:
Building
Building
import gradio as gr | |
from matplotlib import pyplot as plt | |
from mapper.utils.io import read_image | |
from mapper.utils.exif import EXIF | |
from mapper.utils.wrappers import Camera | |
from mapper.data.image import rectify_image, pad_image, resize_image | |
from mapper.utils.viz_2d import one_hot_argmax_to_rgb, plot_images | |
from mapper.module import GenericModule | |
from perspective2d import PerspectiveFields | |
import torch | |
import numpy as np | |
from typing import Optional, Tuple | |
from omegaconf import OmegaConf | |
description = """ | |
<h1 align="center"> | |
<ins>MapItAnywhere (MIA) </ins> | |
<br> | |
Empowering Bird’s Eye View Mapping using Large-scale Public Data | |
<br> | |
<h3 align="center"> | |
<a href="https://mapitanywhere.github.io" target="_blank">Project Page</a> | | |
<a href="https://arxiv.org/abs/2109.08203" target="_blank">Paper</a> | | |
<a href="https://github.com/MapItAnywhere/MapItAnywhere" target="_blank">Code</a> | |
</h3> | |
<p align="center"> | |
Mapper generates birds-eye-view maps from in-the-wild monocular first-person view images. You can try our demo by uploading your images or using the examples provided. Tip: You can also try out images across the world using <a href="https://www.mapillary.com/app" target="_blank">Mapillary</a> 😉 Also try out some examples that are taken in cities we have not trained on! | |
</p> | |
""" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
cfg = OmegaConf.load("config.yaml") | |
class ImageCalibrator(PerspectiveFields): | |
def __init__(self, version: str = "Paramnet-360Cities-edina-centered"): | |
super().__init__(version) | |
self.eval() | |
def run( | |
self, | |
image_rgb: np.ndarray, | |
focal_length: Optional[float] = None, | |
exif: Optional[EXIF] = None, | |
) -> Tuple[Tuple[float, float], Camera]: | |
h, w, *_ = image_rgb.shape | |
if focal_length is None and exif is not None: | |
_, focal_ratio = exif.extract_focal() | |
if focal_ratio != 0: | |
focal_length = focal_ratio * max(h, w) | |
calib = self.inference(img_bgr=image_rgb[..., ::-1]) | |
roll_pitch = (calib["pred_roll"].item(), calib["pred_pitch"].item()) | |
if focal_length is None: | |
vfov = calib["pred_vfov"].item() | |
focal_length = h / 2 / np.tan(np.deg2rad(vfov) / 2) | |
camera = Camera.from_dict( | |
{ | |
"model": "SIMPLE_PINHOLE", | |
"width": w, | |
"height": h, | |
"params": [focal_length, w / 2 + 0.5, h / 2 + 0.5], | |
} | |
) | |
return roll_pitch, camera | |
def preprocess_pipeline(image, roll_pitch, camera): | |
image = torch.from_numpy(image).float() / 255 | |
image = image.permute(2, 0, 1).to(device) | |
camera = camera.to(device) | |
image, valid = rectify_image(image, camera.float(), -roll_pitch[0], -roll_pitch[1]) | |
roll_pitch *= 0 | |
image, _, camera, valid = resize_image( | |
image=image, | |
size=512, | |
camera=camera, | |
fn=max, | |
valid=valid | |
) | |
image, valid, camera = pad_image( | |
image, 512, camera, valid | |
) | |
camera = torch.stack([camera]) | |
return { | |
"image": image.unsqueeze(0).to(device), | |
"valid": valid.unsqueeze(0).to(device), | |
"camera": camera.float().to(device), | |
} | |
calibrator = ImageCalibrator().to(device) | |
model = GenericModule(cfg) | |
model = model.load_from_checkpoint("trained_weights/mapper-excl-ood.ckpt", strict=False, cfg=cfg) | |
model = model.to(device) | |
model = model.eval() | |
def run(input_img): | |
image_path = input_img.name | |
image = read_image(image_path) | |
with open(image_path, "rb") as fid: | |
exif = EXIF(fid, lambda: image.shape[:2]) | |
gravity, camera = calibrator.run(image, exif=exif) | |
data = preprocess_pipeline(image, gravity, camera) | |
res = model(data) | |
prediction = res['output'] | |
rgb_prediction = one_hot_argmax_to_rgb(prediction, 6).squeeze(0).permute(1, 2, 0).cpu().long().numpy() | |
valid = res['valid_bev'].squeeze(0)[..., :-1] | |
rgb_prediction[~valid.cpu().numpy()] = 255 | |
# TODO: add legend here | |
plot_images([image, rgb_prediction], titles=["Input Image", "Top-Down Prediction"], pad=2, adaptive=True) | |
return plt.gcf() | |
examples = [ | |
["examples/left_crossing.jpg"], | |
["examples/crossing.jpg"], | |
["examples/two_roads.jpg"], | |
["examples/japan_narrow_road.jpeg"], | |
["examples/zurich_crossing.jpg"], | |
["examples/night_road.jpg"], | |
["examples/night_crossing.jpg"], | |
] | |
demo = gr.Interface( | |
fn=run, | |
inputs=[ | |
gr.File(file_types=["image"], label="Input Image") | |
], | |
outputs=[ | |
gr.Plot(label="Prediction", format="png"), | |
], | |
description=description, | |
examples=examples) | |
demo.launch(share=True, server_name="0.0.0.0") |